

High Speed Highly Integrated 4GB DDR4 Memory Module

ngir opeca ringiny integrated	+OB DDIX+ Michiol	, illoudi
FEATURES	SPEED GRADES ¹	M

- Wide Word DD4 SDRAM Module
- Configurations:
- -64Meg x 32 x 8 banks x 2 Channels
- -64Meg x 72 x 8 banks x 1 Channels
- -64Meg x 40 x 8 banks x 2 Channels
- $V_{\rm DD} = V_{\rm DDO} = 1.2 \text{V} \pm 60 \text{mV}$
- $V_{pp} = 2.5V, -125mV/+250mV$
- On-chip, internal, adjustable V_{REFDQ} generation
- 1.2V pseudo open-drain I/O
- T_C of 0°C to 95°C; Extended Temps Available
 - -64ms, 8192-cycle refresh at 0°C to 85°C
 - 32ms between 85°C to 95°C
 - 16ms between 95°C to 105°C
 - -8ms between 105°C to 125°C
- 8 internal banks: 2 groups of 4 banks each
- 8n-bit prefetch architecture
- Programmable data strobe preambles
- Data strobe preamble training
- Command/Address latency (CAL)
- CEDINFORI Multipurpose register READ and WRITE capability
- Write and read leveling
- Self refresh mode
- Low-power auto self refresh (LPASR)
- Temperature controlled refresh (TCR)
- Fine granularity refresh
- Self refresh abort
- Maximum power saving
- Output driver calibration
- Nominal, park, and dynamic on
- (ODT)
- Data bus inversion (DBI) fe
- Command/Address (CA)
- Databus write cyclic redu ncy check (CRC)
- Per-DRAM addressability
- Connectivity test
- JEDEC JESD-79 compliant

	SPEED GRADES ¹	Marking
•	FBGA package (Pb-free)	
	– 321-ball 15mm x 20mm	
	- 0.8mm pitch	
•	Timing – cycle time ¹	
	- 0.625ns @ CL = 22 (DDR4-3200)	-062
	-0.682ns @ CL = 20 (DDR4-2933)	-068
	-0.750ns @ CL = 19 (DDR4-2666)	-75
	- 0.833ns @ CL = 17 (DDR4-2400)	-083
	-0.937ns @ CL = 16 (DDR4-2133)	-093
	- 1.071ns @ CL = 13 (DDR4-1866)	-107
•	Operating temperature	
	- Commercial $(0^{\circ} < 7^{\circ})$	None

vailability on some options. ctory before ordering.

High Performance Highly Integrated Module

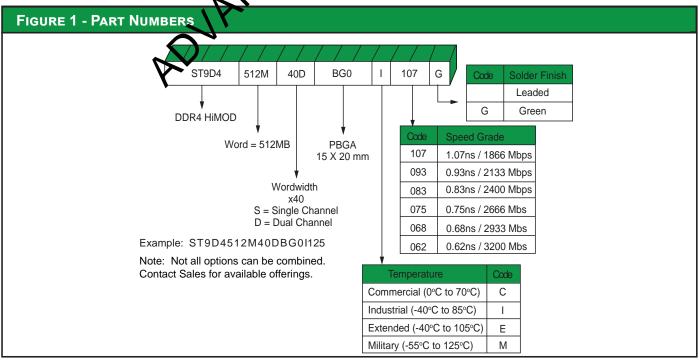


TABLE 1: KEY T	IMING PARAMETERS				
Speed Grade	Data Rate (MT/s)	Target ^t RCD- ^t RP-CL	^t RCD (ns)	^t RP (ns)	CL (ns)
-062 ⁶	3200	22-22-22	13.75	13.75	13.75
-068 ⁵	2933	21-21-21	14.32	14.32	14.32
-075 ⁴	2666	19-19-19	14.25	14.25	14.25
-083 ³	2400	17-17-17	14.16	14.16	14.16
-093 ²	2133	16-16-16	15	15	15
-107 ¹	1866	13-13-13	13.92	13.92	13.92

Notes:

- 1. Backward compatible to 1600, CL = 11.
- 2. Backward compatible to 1600, CL = 11 and 1866, CL = 13.
- 3. Backward compatible to 1600, CL = 11; 1866, CL = 13; and 2133, CL = 15.
- 4. Backward compatible to 1600, CL = 11; 1866, CL = 13; 2133, CL = 15; and 2100 CL = 17. Limited availability. Backward compatible to 1600, CL = 11; 1866, CL = 13; 2133, CL = 15; 2100, CL = 17; and 2666, CL = 19.
- 5. Limited availability.
 Backward compatible to 1600, CL = 11; 1866, CL = 13; 2133, CL 13, 2400, CL = 17; 2666, CL = 19; and 2933
 6. CL = 20 and CL = 21. Limited availability.

Table 2: Addressing	213
Parameter	512 Meg x 32(40)
Number of bank groups	2
Bank group address	BG0
Bank count per group	4
Bank address in bank group	BA[1:0]
Row addressing	64K (A[15:0])
Column addressing	1K (A[9:0])
Page size	2KB

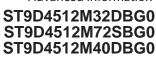
CONTENTS	
General Notes and Description	16
Description	
Extended Temperatures	16
General Notes	16
BlockDiagrams	17
BallAssignments	
Ball Descriptions	26
Package Dimensions	29
State Diagram	
Functional Description	32
Electrical Specifications	33
AbsoluteRatings	33
DRAM Component Operating Temperature Range	33
Electrical Characteristics – AC and DC Operating Conditions	34
SupplyOperatingConditions	34
Leakages	35
V _{REFCA} Supply	35
V _{REFDQ} Supply and Calibration Ranges	36
V _{REFDQ} Ranges	37
Electrical Characteristics – AC and DC Single-Ended Input Measurement Levels	38
RESET_nInputLevels	38
Command/AddressInputLevels	39
Data Receiver Input Requirements	42
Connectivity Test (CT) Mode Input Levels	45
Electrical Specifications AbsoluteRatings DRAMComponentOperatingTemperatureRange Electrical Characteristics – AC and DC Operating Conditions SupplyOperatingConditions Leakages VREFCA Supply VREFCA Supply VREFDQ Ranges Electrical Characteristics – AC and DC Single-Ended Input Measurement Levels RESET_nInputLevels Command/AddressInputLevels DataReceiverInputRequirements ConnectivityTest (CT) Mode Input Levels Differential Characteristics – AC and DC Differential Input Measurement Levels DifferentialInputs Single-Ended Requirements for CK Differential Signals Slew Rate Definitions for CK Differential Input Signals	49
DifferentialInputs	50
Single-Ended Requirements for CK Differential Signals	51
Slew Rate Definitions for CK Differential Lapyt Signals	51
Slew Rate Definitions for CK Differential luput Signals CK Differential Input Cross Point Veltage	52
DQS Differential Input Signal Definition and Swing Requirements	53
DQS Differential Input Cross Point Witage	55
Slew Rate Definitions for DOS Differential Input Signals	56
Electrical Characteristics – Overshoot and Undershoot Specifications	58
Address, Command, and Spirol Overshoot and Undershoot Specifications	58
Clock Overshoot and Undershoot Specifications	
Data, Strobe, and Mask Overshoot and Undershoot Specifications	
Electrical Characteristics – AC and DC Output Measurement Levels	
Single-EndedOutputs	
DifferentialOutputs	
Reference Load for AC Timing and Output Slew Rate	
ConnectivityTestModeOutputLevels	64
Electrical Characteristics – AC and DC Output Driver Characteristics	
Output Driver Electrical Characteristics	
Output Driver Temperature and Voltage Sensitivity	
AlertDriver Electrical Characteristics – On-Die Termination Characteristics	
ODT Levels and I-V Characteristics	
ODT Temperature and Voltage Sensitivity	
ODTTimingDefinitions	12

Features DRAM Package Electrical Specifications IDD, IPP, and IDDQ Measurement Conditions 81 Electrical Characteristics and AC Timing Parameters108 Electrical Characteristics and AC Timing Parameters: 2666 Through 3200120 RESET and Initialization Procedure Power-Up and Initialization Sequence RESET Initialization with Stable Power Sequence Uncontrolled Power-Down Sequence Programming Mode Registers Mode Register 0 Burst Length, Type, and Order CAS Latency Test Mode Write Recovery(WR)/READ-to-PRECHARGE DLL RESET141 Mode Register 1143 DLL Enable/DLL Disable Output Driver Impedance Control ODT R_{TT(NOM)} Values144 Additive Latency Write Leveling144 Output Disable Mode Register 2145 CAS WRITE Latency Low-Power Auto Self Refresh147 Dynamic ODT147 Write Cyclic Redundant Clack Data Bus 147 Target Row Refresh Mode 147 WRITE Command Latency When CRC/DM is Enabled150

	Features
Temperature Controlled Refresh	153
CommandAddressLatency	153
Internal V _{REF} Monitor	
MaximumPowerSavingsMode	
Mode Register 5	154
DataBusInversion	
DataMask	
CAParityPersistentErrorMode	
ODTInputBufferforPower-Down	
CAParityErrorStatus	
CRC Error Status	
CAParityLatencyMode	156
Mode Register 6	157
tCCD_LProgramming	158
V _{REFDQ} CalibrationEnable	158
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	158
V _{REFDQ} CalibrationValue	158
Truth Tables	159
NOP Command	
DESELECT Command	
DLL Off Mode	
DLL On/Off Switching Procedures	
DLL Switch Sequence from DLL-On to DLL-Off	164
DLLOfftoDLL-OnProcedure	165
VREFDQ Calibration Value Truth Tables NOP Command DESELECT Command DLL Off Mode DLL On/Off Switching Procedures DLL Switch Sequence from DLL-On to DLL-Off DLLOffto DLL-On Procedure Input Clock Frequency Change Write Leveling DRAM Setting for Write Leveling and DRAMTER MNATION Function in that Mode Procedure Description Write-Leveling Mode Exit Command Address Latency Low-Power Auto Self Refresh Mode Manual Self Refresh Mode Multipurpose Register MPRReads MPRReadout Format MPRReadout Format MPRReadout Serial Format	166
WriteLeveling	168
DRAM Setting for Write Leveling and DRAM TERMINATION Function in that Mode	169
Procedure Description	170
Write-LevelingModeExit	171
Command Address Latency	173
Low-Power Auto Self Refresh Mode	177
ManualSelfRefreshMode	177
MultipurposeRegister	178
MPRReads	180
MPRReadoutFormat	182
MPRReadoutSerialFormat	182
MPRReadoutParallelForMat	
MPRReadoutStaggeredFormat	
MPRREADWaveforms	
MPRWrites	
MPRWRITEWaveforms	
MPRREFRESHWaveforms	
Gear-Down Mode	
Maximum Power-Saving Mode	
MaximumPower-SavingModeEntry	
MaximumPower-SavingModeEntryinPDA	
CKETransitionDuringMaximumPower-SavingMode	
MaximumPower-SavingModeExit	
Command/Address Parity	
Per-DRAM Addressability	
V _{REFDQ} Calibration	
V _{REFDQ} Range and Levels	
$V_{ m REFDO}$ Target Settings	211

	Features
V _{REFDO} Step Size	
V _{REFDQ} Increment and Decrement Timing	
Connectivity Test Mode	
PinMapping	
MinimumTermsDefinitionforLogicEquations	
Logic Equations	
CTInputTimingRequirements	
Target Row Refresh Mode	
ACTIVATE Command	
PRECHARGE Command	
REFRESH Command	
Temperature-Controlled Refresh Mode	
TCR Mode – Normal Temperature Range	220
TCRMode-ExtendedTemperatureRange	220
TCR Mode – Normal Temperature Range TCR Mode – Extended Temperature Range Fine Granularity Refresh Mode Mode Register and Command Truth Table tREFI and tRFC Parameters Changing Refresh Rate	222
ModeRegisterandCommandTruthTable	222
tREFIandtRFCParameters	222
Changing Refresh Rate	225
UsagewithTCRMode	
SelfRefreshEntryandExit	
SELF REFRESH Operation	
SelfRefreshAbort	
SelfRefreshExitwithNOPCommand	
tREFIandtRFCParameters ChangingRefreshRate UsagewithTCRMode SelfRefreshEntryandExit SELF REFRESH Operation SelfRefreshAbort SelfRefreshExitwithNOPCommand Power-Down Mode Power-DownClarifications—Case 1 Power-DownEntry, ExitTiming with CAL ODT Input Buffer Disable Mode for Power-Down CRC Write Data Feature CRCWriteData WRITECRCDATAOperation DBI_nandCRCBothEnabled DM_nandCRCBothEnabled DM_n and DBI_n Conflict During Writes with CRC Enabled CRCandWritePreambleRestrictions CRCSimultaneousOperationRestrictions	
Power-DownClarifications-Case 1	
Power-Down Entry, Exit Timing with CAL	
ODT Input Buffer Disable Mode for Power-Down	
CRC Write Data Feature	
CRCWriteData	
WRITECRCDATAOperation	
DBI_nandCRCBothEnabled	
DM_nandCRCBothEnabled	
DM_n and DBI_n Conflict During Wates with CRC Enabled	
CRCandWritePreambleRestrictions	
CRCSimultaneousOperationRestrictions	244
CRCPolynomial	
CRCCombinatorialLogic equations	
BurstOrderingforBL8	
CRCDataBitMapping	
CRCEnabledWithBC4	
CRCwithBC4DataBitMapping	
CRCErrorHandling	
CRCWriteDataFlowDiagram	
Data Bus Inversion	
DBIDuringaWRITEOperation	
DBIDuringaREADOperation	

	Features
Programmable Preamble Modes and DQS Postambles	254
WRITEPreambleMode	254
READPreambleMode	257
READPreambleTraining	
WRITEPostamble	258
READPostamble	
Bank Access Operation	
READ Operation	
ReadTimingDefinitions	265
ReadTiming-Clock-to-DataStrobeRelationship	
ReadTiming-DataStrobe-to-DataRelationship	
$tLZ(DQS), tLZ(DQ), tHZ(DQS), and tHZ(DQ) \ Calculations$	
tRPRECalculation	.
tRPSTCalculation	270
READBurstOperation	\.
READBurstOperationREADOperation Followed by Another READOperation	
READ Operation Followed by WRITE Operation	
READOperationFollowedbyPRECHARGEOperation	
READ Operation with Read Data Bus Inversion (DBI)	
READ Operation with Command/Address Parity (CAParity)	
READ Followed by WRITE with CRC Enabled	
READ Operation Followed by PRECHARGE Operation	
WRITE Operation	
WriteTimingDefinitions	
WriteTiming-Clock-to-DataStrobeRelationship	
WriteTiming-DataStrobe-to-DataRelationship	
WRITEBurstOperationWRITEOperation Followed by Another WRITEOperation	298
WRITEOperationFollowedbyAnotherWRITFOperation	300
WRITEOperationFollowedbyREADOperation WRITEOperationFollowedbyPRECHARGEOperation WRITEOperationwithWRITEORIEDADIA:	306
WRITEOperationFollowedbyPRECHARGEOperation	310
WRITEOperationwithCAParityEnables	
WRITEOperationwithWriteCrCEnvoled Write Timing Violations	321
Write Timing Violations	321
Motivation	
DataSetupandHoldViolesion	321
Strobe-to-StrobeandStrove-to-ClockViolations	
ZQ CALIBRATION Commands	
On-Die Termination	
ODT Mode Register and ODT State Table	
ODTReadDisableStateTable	
Synchronous ODT Mode	
ODTLatencyandPostedODT	
TimingParameters	
ODTDuringReads	
Dynamic ODT	
Functional Description	
Asynchronous ODT Mode	
Options Tables	



LIST OF FIGURES	
Figure 1: Part Numbers	2
Figure 2: ST9D4512M32DBG0 Equivalent Functional Diagram	17
Figure 3: ST9D4512M72SBG0 Equivalent Functional Diagram	
Figure 4: ST9D4512M40DBG0 Equivalent Functional Diagram	
Figure 5: ST9D4512M32DBG0 Detailed Electrical Diagram	
Figure 6: ST9D4512M72SBG0 Detailed Electrical Diagram	21
Figure 7: ST9D4512M40DBG0 Detailed Electrical Diagram	22
Figure 8: ST9D4512M32DBG0 Ball Assignment	
Figure 9: ST9D4512M72SBG0 Ball Assignment	24
Figure 10: ST9D4512M40DBG0 Ball Assignment	
Figure 11: BG0 Pacakge Dimensions.	29
Figure 12: Simplified State Diagram	30
Figure 13: V _{REFDQ} Voltage Range	35
Figure 14: RESET_n Input Slew Rate Definition	38
Figure 12: Simplified State Diagram Figure 13: V _{REFDQ} Voltage Range Figure 14: RESET_n Input Slew Rate Definition Figure 15: Single-Ended Input Slew Rate Definition Figure 16: DQ Slew Rate Definitions Figure 17: Rx Mask Relative to [†] DS/ [†] DH Figure 18: Rx Mask Without Write Training Figure 19: TEN Input Slew Rate Definition Figure 20: CT Type-A Input Slew Rate Definition Figure 21: CT Type-B Input Slew Rate Definition Figure 22: CT Type-C Input Slew Rate Definition Figure 23: CT Type-D Input Slew Rate Definition Figure 24: Differential AC Swing and "Time Exceeding AC-Level" [†] DVAC Figure 25: Single-Ended Requirements for CK	41
Figure 16: DQ Slew Rate Definitions	42
Figure 17: Rx Mask Relative to ^t DS/ ^t DH	44
Figure 18: Rx Mask Without Write Training	45
Figure 19: TEN Input Slew Rate Definition	46
Figure 20: CT Type-A Input Slew Rate Definition	46
Figure 21: CT Type-B Input Slew Rate Definition	47
Figure 22: CT Type-C Input Slew Rate Definition	48
Figure 23: CT Type-D Input Slew Rate Definition	48
Figure 24: Differential AC Swing and "Time Exceeding AC-Level" 'DVAC	49
Figure 25: Single-Ended Requirements for CK	51
Figure 26: Differential input siew Rate Definition Str CK_t, CK_C	52
Figure 26: Differential Input Slew Rate Definition for CK_t, CK_c Figure 27: V _{IX(CK)} Definition Figure 28: Differential Input Signal Definition for DQS_t, DQS_c	52
Figure 29: DQS_t, DQS_c Input Peak Valence Calculation and Range of Exempt non-Monotonic Signaling	50
Figure 29. DQ5_t, DQ5_t input reak was be calculation and kange of Exempt non-Monotonic signaling	54
Figure 30: V _{IXDQS} Definition	56
Figure 32: ADDR CMD CNTL (Datchoot and Hydershoot Definition	58
Figure 32: ADDR, CMD, CNTL Overshoot and Undershoot Definition	50
Figure 34: Data, Strobe, and Mask Overshoot and Undershoot Definition	60
Figure 35: Single-ended Output Slew Rate Definition	
Figure 36: Differential Output Slew Rate Definition	
Figure 37: Reference Load For AC Timing and Output Slew Rate	
Figure 38: Connectivity Test Mode Reference Test Load	64
Figure 39: Connectivity Test Mode Output Slew Rate Definition	
Figure 40: Output Driver: Definition of Voltages and Currents	
Figure 41: Alert Driver	
Figure 42: ODT Definition of Voltages and Currents	
Figure 43: ODT Timing Reference Load	
Figure 44: ^t ADC Definition with Direct ODT Control	74
Figure 45: tADC Definition with Dynamic ODT Control	
Figure 46: tAOFAS and tAONAS Definitions	75
Figure 47: Thermal Measurement Point	
Figure 48: Measurement Setup and Test Load for IDDx, IDDPx, and IDDQx	
Figure 49: Correlation: Simulated Channel I/O Power to Actual Channel I/O Power	
Figure 50: RESET and Initialization Sequence at Power-On Ramping	
Figure 51: RESET Procedure at Power Stable Condition	

	Features
Figure 52: tMRD Timing	136
Figure 53: tMOD Timing	136
Figure 54: DLL-Off Mode Read Timing Operation	163
Figure 55: DLL Switch Sequence from DLL-On to DLL-Off	165
Figure 56: DLL Switch Sequence from DLL-Off to DLL-On	
Figure 57: Write-Leveling Concept, Example 1	
Figure 58: Write-Leveling Concept, Example 2	
Figure 59: Write-Leveling Sequence (DQS Capturing CK LOW at T1 and CK HIGH at T2)	171
Figure 60: Write-Leveling Exit	
Figure 61: CAL Timing Definition	
Figure 62: CAL Timing Example (Consecutive CS_n = LOW)	
Figure C2. CAL English Timing tMOD CAL	174
Figure 64: tMOD CAL, MRS to Valid Command Timing with CAL Enabled	174
Figure 65: CAL Enabling MRS to Next MRS Command, tMRD, CAL	175
Figure 66: tMRD CAL, Mode Register Cycle Time With CAL Enabled	176
Figure 67: Consecutive READ BL8. CAL3. 1tCK Preamble. Different Bank Group	176
Figure 63: CAL Enable Hilling – MOD_CAL Figure 64: tMOD_CAL, MRS to Valid Command Timing with CAL Enabled Figure 65: CAL Enabling MRS to Next MRS Command, tMRD_CAL Figure 66: tMRD_CAL, Mode Register Cycle Time With CAL Enabled Figure 67: Consecutive READ BL8, CAL3, 1tCK Preamble, Different Bank Group Figure 68: Consecutive READ BL8, CAL4, 1tCK Preamble, Different Bank Group Figure 69: Auto Self Refresh Ranges	176
Figure 69: Auto Self Refresh Ranges	178
Figure 70: MPR Block Diagram	179
Figure 71: MPR READ Timing	185
Figure 72: MPR Back-to-Back READ Timing	186
Figure 73: MPR READ-to-WRITE Timing	187
Figure 74: MPR WRITE and WRITE-to-READ Timing	188
Figure 75: MPR Rack-to-Rack WRITE Timing	189
Figure 76: RFFRFSH Timing	189
Figure 77: READ-to-REERESH Timing	190
Figure 68: Consecutive READ BL8, CAL4, 1tCK Preamble, Different Bank Groxp	190
Figure 79: Clock Mode Change from 1/2 Rate to 1/2 Rate (Initialization)	192
Figure 80: Clock Mode Change After Exiting Self Refresh	192
Figure 81: Comparison Between Gear-Down Disable and Gear-Down Fnable	192
Figure 82: Maximum Power-Saving Mode Rang	193
Figure 82: Maximum Power-Saving Mode Entry with PDA	194
Figure 84: Maintaining Maximum Pover, Saving Mode with CKE Transition	195
Figure 84: Maintaining Maximum Power-Saving Mode with CKE Transition	196
Figure 86: Command/Address Parity Operation	197
Figure 87: Command/Address Larity During Normal Operation	198
Figure 88: Persistent CA Party Error Checking Operation	199
Figure 89: CA Parity Error Checking – SRE Attempt	
Figure 90: CA Parity Error Checking – SRX Attempt	
Figure 91: CA Parity Error Checking – DDE/PDX	
Figure 92: Parity Entry Timing Example – tMRD_PAR	
Figure 93: Parity Entry Timing Example – tMOD_PAR	
Figure 94: Parity Exit Timing Example – tMRD_PAR	
Figure 95: Parity Exit Timing Example – tMOD_PAR	
Figure 96: CA Parity Flow Diagram	
Figure 97: PDA Operation Enabled, BL8	
Figure 98: PDA Operation Enabled, BC4	
Figure 99: MRS PDA Exit	
Figure 100: V _{REFDO} Voltage Range	
Figure 101: Example of VREF Set Tolerance and Step Size	
Figure 102: V _{REFDQ} Timing Diagram for V _{REF,time} Parameter	
Figure 103: V _{REFDQ} Training Mode Entry and Exit Tilling Diagram Figure 104: V _{REF} Step: Single Step Size Increment Case	
1.2010 101. AKEL OICH. OILEIG OICH OILE HIGIGIHGIH CASC	∠10

	Features
Figure 105: V _{REF} Step: Single Step Size Decrement Case	211
Figure 106: V _{REF} Full Step: From V _{REE,min} to V _{REE,max} Case	
Figure 107: V_{REF} Full Step: From $V_{REF,max}$ to $V_{REF,min}$ Case	
Figure 108: V _{REFDQ} Equivalent Circuit	212
Figure 109: Connectivity Test Mode Entry	
Figure 110: ^t RRD Timing	
Figure 111: tFAW Timing	
Figure 112: REFRESH Command Timing	
Figure 113: Postponing REFRESH Commands (Example)	
Figure 114: Pulling In REFRESH Commands (Example)	
Figure 115: TCR Mode Example 1	
Figure 116: 4Gb with Fine Granularity Refresh Mode Example	
Figure 117: OTF REFRESH Command Timing	225
	228
	229
Figure 120: Self Refresh Abort	230
Figure 121: Self Refresh Exit with NOP Command	231
Figure 122: Active Power-Down Entry and Exit Figure 123: Power-Down Entry After Read and Read with Auto Precharge	233
Figure 123: Power-Down Entry After Read and Read with Auto Precharge	234
Figure 124: Power-Down Entry After Write and Write With Auto Prechage	234
Figure 125: Power-Down Entry After Write	235
Figure 125: Precharge Power-Down Entry and Exit	233
Figure 120: Active Command to Power Down Entry	230
Figure 123: Power-Down Entry After Write and Write with Auto Precharge Figure 124: Power-Down Entry After Write and Write with Auto Precharge Figure 125: Power-Down Entry After Write Figure 126: Precharge Power-Down Entry and Exit Figure 127: REFRESH Command to Power-Down Entry Figure 128: Active Command to Power-Down Entry Figure 129: PRECHARGE/PRECHARGE ALL Command to Power-Down Entry	230
Figure 130: MRS Command to Power-Down Entry	237
Figure 131: Power-Down Entry/Exit Clarifications—Sase 1	231
Figure 132: Active Power-Down Entry and Exit Zinxing with CAL	230
Figure 132. REEDESH Command to Downer Down Partry with CAI	239
Figure 133: REFRESH Command to Power-Down Entry with CAL Figure 134: ODT Power-Down Entry with (DT)Buffer Disable Mode	240
Figure 135: ODT Power-Down Exit with (N) Ruffer Disable Mode	2/12
Figure 136: CRC Write Data Operation	242
Figure 137: CRC Frror Reporting	251
Figure 137: CRC Error Reporting	251
Figure 139: 1 ^t CK vs. 2 ^t CK WR TE Preamble Mode	
Figure 140: 1 tCK vs. 2 tCK WRITE Preamble Mode, tCCD = 4	255
Figure 141: 1 tCK vs. 2 tCK W (ITE Preamble Mode, tCCD = 5	256
Figure 142: 1 ^t CK vs. 2 ^t CK WRITE Preamble Mode, ^t CCD = 6	
Figure 143: 1 tCK vs. 2 tCK READ Preamble Mode	
Figure 144: READ Preamble Training	
Figure 145: WRITE Postamble	258
Figure 146: READ Postamble	
Figure 147: Bank Group x4/x8 Block Diagram	
Figure 148: READ Burst tCCD_S and tCCD_L Examples	
Figure 149: Write Burst tCCD_S and tCCD_L Examples	
Figure 150: ^t RRD Timing	
Figure 151: tWTR_S Timing (WRITE-to-READ, Different Bank Group, CRC and DM Disabled)	262

Eigers 152 MATER I Timing (MADITE to DEAD Come Book Crown CDC and DM Disabled)	262
Figure 152: tWTR_L Timing (WRITE-to-READ, Same Bank Group, CRC and DM Disabled)	
Figure 153: Read Timing Definition	
Figure 154: Clock-to-Data Strobe Relationship	
Figure 155: Data Strobe-to-Data Relationship	
Figure 156:tLZ and tHZ Method for Calculating Transitions and Endpoints	
Figure 157: tRPRE Method for Calculating Transitions and Endpoints	
Figure 158: tRPST Method for Calculating Transitions and Endpoints	
Figure 158: READ Burst Operation, RL = 11 (AL = 0, CL = 11, BL8)	
Figure 160: READ Burst Operation, RL = 21 (AL = 10, CL = 11, BL8)	
Figure 161: Consecutive READ (BL8) with 1tCK Preamble in Different Bank Group	
Figure 162: Consecutive READ (BL8) with 2 ^t CK Preamble in Different Bank Group	
Figure 163: Nonconsecutive READ (BL8) with 1tCK Preamble in Same or Different Bank Group	
Figure 164: Nonconsecutive READ (BL8) with 2 ^t CK Preamble in Same or Different Bank Group	
Figure 165: READ (BC4) to READ (BC4) with 1 ^t CK Preamble in Different Bank Group	. 275
Figure 166: READ (BC4) to READ (BC4) with 2tCK Preamble in Different Bank Group.	. 275
Figure 167: READ (BL8) to READ (BC4) OTF with 1 ^t CK Preamble in Different Bank Group	. 276
Figure 164: READ (BL8) to READ (BC4) OTF with 2tCK Preamble in Different Stank Group	
Figure 169: READ (BC4) to READ (BL8) OTF with 1 ^t CK Preamble in Different Bank Group	
Figure 170: READ (BC4) to READ (BL8) OTF with 2 ^t CK Preamble in Different Bank Group	
Figure 171: READ (BL8) to WRITE (BL8) with 1 ^t CK Preamble in Same of Therent Bank Group	
Figure 172: READ (BL8) to WRITE (BL8) with 2 ^t CK Preamble in Sarte or Different Bank Group	. 278
Figure 173: READ (BC4) OTF to WRITE (BC4) OTF with 1tCK Proach be in Same or Different Bank Group	. 279
Figure 174: READ (BC4) OTF to WRITE (BC4) OTF with 2tCK Preamble in Same or Different Bank Group	. 280
Figure 175: READ (BC4) Fixed to WRITE (BC4) Fixed with 150 Preamble in Same or Different Bank Group	. 281
Figure 176: READ (BC4) Fixed to WRITE (BC4) Fixed with 21NR Preamble in Same or Different Bank Group	. 281
Figure 177: READ (BC4) to WRITE (BL8) OTF with 1tCK Preamble in Same or Different Bank Group	. 282
Figure 178: READ (BC4) to WRITE (BL8) OTF with 200K Preamble in Same or Different Bank Group	
Figure 179: READ (BL8) to WRITE (BC4) OTF with MCK Preamble in Same or Different Bank Group	. 283
Figure 180: READ (BL8) to WRITE (BC4) OTE with 2 tCK Preamble in Same or Different Bank Group	
Figure 181: READ to PRECHARGE with 1 ^t C (Preamble	. 284
Figure 182: READ to PRECHARGE with 2tCX Freamble	
Figure 183: READ to PRECHARGE with Additive Latency and 1tCK Preamble	
Figure 184: READ with Auto Prechargy and 1tCK Preamble	. 286
Figure 185: READ with Auto Precise ge, Additive Latency, and 1tCK Preamble	. 287
Figure 186: Consecutive REAQ (BL8) with 1tCK Preamble and DBI in Different Bank Group	
Figure 187: Consecutive RIMD (SL8) with 1tCK Preamble and CA Parity in Different Bank Group	
Figure 188: READ (BL8) to WRITE (BL8) with 1 ^t CK Preamble and CA Parity in Same or Different Bank Group	
Figure 189: READ (BL8) to WRITE (BL8 or BC4: OTF) with 1 ^t CK Preamble and Write CRC in Same or Different	
Bank Group	. 290
Figure 190: READ (BC4: Fixed) to WRITE (BC4: Fixed) with 1 ^t CK Preamble and Write CRC in Same or Different	
Bank Group	. 291
Figure 191: Consecutive READ (BL8) with CAL (3tCK) and 1tCK Preamble in Different Bank Group	
Figure 192: Consecutive READ (BL8) with CAL (4 ^t CK) and 1 ^t CK Preamble in Different Bank Group	
Figure 193: Write Timing Definition	
Figure 194: Rx Compliance Mask	
Figure 195: V _{CENT_DQ} V _{REFDQ} Voltage Variation	
Figure 196: Rx Mask DQ-to-DQS Timings	
Figure 197: Rx Mask DQ-to-DQS Tillings	
Figure 198: Example of Data Input Requirements Without Training	
Figure 199: WRITE Burst Operation, WL = 9 (AL = 0, CWL = 9, BL8)	
Figure 200: WRITE Burst Operation, WL = 9 (AL = 0, CWL = 9, BL8)	
Figure 200: WRITE Burst Operation, WE = 19 (AE = 10, GWE = 9, BE6)	
1 Iguio 201, Conscounte vitu i (DEO) with 1 OK i icanible III Different Dank Civap	. 500

Fe	eatures
Figure 202: Consecutive WRITE (BL8) with 2 ^t CK Preamble in Different Bank Group	301
Figure 203: Nonconsecutive WRITE (BL8) with 1 ^t CK Preamble in Same or Different Bank Group	
Figure 204: Nonconsecutive WRITE (BL8) with 2 ^t CK Preamble in Same or Different Bank Group	302
Figure 205: WRITE (BC4) OTF to WRITE (BC4) OTF with 1 tCK Preamble in Different Bank Group	
Figure 206: WRITE (BC4) OTF to WRITE (BC4) OTF with 2 tCK Preamble in Different Bank Group	
Figure 207: WRITE (BC4) Fixed to WRITE (BC4) Fixed with 1 tCK Preamble in Different Bank Group	304
Figure 208: WRITE (BL8) to WRITE (BC4) OTF with 1 ^t CK Preamble in Different Bank Group	305
Figure 209: WRITE (BC4) OTF to WRITE (BL8) with 1 ^t CK Preamble in Different Bank Group	306
Figure 210: WRITE (BL8) to READ (BL8) with 1 ^t CK Preamble in Different Bank Group	306
Figure 211: WRITE (BL8) to READ (BL8) with 1 ^t CK Preamble in Same Bank Group	307
Figure 212: WRITE (BC4) OTF to READ (BC4) OTF with 1 ^t CK Preamble in Different Bank Group	308
Figure 213: WRITE (BC4) OTF to READ (BC4) OTF with 1tCK Preamble in Same Bank Group	308
Figure 214: WRITE (BC4) Fixed to READ (BC4) Fixed with 1 ^t CK Preamble in Different Bank Group	309
Figure 215: WRITE (BC4) Fixed to READ (BC4) Fixed with 1tCK Preamble in Same Bank Goup	
Figure 216: WRITE (BL8/BC4-OTF) to PRECHARGE with 1tCK Preamble	310
a four 2111 Hittle (Bot Thiou) to The or Hittle Children Control Contr	
Figure 218: WRITE (BL8/BC4-OTF) to Auto PRECHARGE with 1 ^t CK Preamble	311
Figure 218: WRITE (BC4-Fixed) to Auto PRECHARGE with 1tCK Preamble	312
Figure 218: WRITE (BC4-Fixed) to Auto PRECHARGE with 1tCK Preamble	313
Figure 221: WRITE (BC4-Fixed) with 1 ^t CK Preamble and DBI	314
Figure 222: Consecutive Write (BL8) with 1 ^t CK Preamble and CA Parity in Different Bank Group	
Figure 223: Consecutive WRITE (BL8/BC4-OTF) with 1tCK Preamble and Write CRC in Same or Different Ba	.nk
Group	316
Figure 224: Consecutive WRITE (BC4-Fixed) with 1 ^t CK Prear ble and Write CRC in Same or Different Bank	
GroupFigure 225: Nonconsecutive WRITE (BL8/BC4-OTF) with MCK Preamble and Write CRC in Same or Differen	317
Figure 225: Nonconsecutive WRITE (BL8/BC4-OTF) with MCK Preamble and Write CRC in Same or Differen	ıt
Bank Group	318
Figure 226: Nonconsecutive WRITE (BL8/BC4-OT) with 2 ^t CK Preamble and Write CRC in Same or Differen	ıt
Bank GroupFigure 227: WRITE (BL8/BC4-OTF/Fixed) with J *CK Preamble and Write CRC in Same or Different Bank Gro	319
Figure 227: WRITE (BL8/BC4-OTF/Fixed) with J CK Preamble and Write CRC in Same or Different Bank Gro	oup 320
Figure 228: ZQ Calibration Timing	323
Figure 229: Functional Representation OVODT	324
Figure 230: Synchronous ODT Timing with BL8	327
Figure 231: Synchronous ODT with BC4	
Figure 232: ODT During Reads	
Figure 233: Dynamic ODT 11 CX Preamble; CL = 14, CWL = 11, BL = 8, AL = 0, CRC Disabled)	
Figure 234: Dynamic ODT (verlapped with R _{TT(NOM)} (CL = 14, CWL = 11, BL = 8, AL = 0, CRC Disabled)	
Figure 235: Asynchronous ODT Timings with DLL Off	331

LIST OF TABLES	
Table 1: Key Timing Parameters	2
Table 2: Addressing	
Table 3: Ball Descriptions	26
Table 4: State Diagram Command Definitions	31
Table 5: Absolute Maximum Ratings	33
Table 6: Temperature Range	33
Table 7: Recommended Supply Operating Conditions	34
Table 8: V _{DD} Slew Rate	34
Table 9: Leakages	35
Table 10: V _{REFDQ} Specification	38
Table 12: RESET_n Input Levels (CMOS)	38
Table 13: Command and Address Input Levels: DDR4-1600 Through DDR4-2400	39
Table 14: Command and Address Input Levels: DDR4-2666	40
Table 15: Command and Address Input Levels: DDR4-2933 and DDR4-3200	40
Table 16: Single-Ended Input Slew Rates	40
Table 17: DQ Input Receiver Specifications	43
Table 18: Rx Mask andtDS/ ^t DH Without Write Training	45
Table 19: TEN Input Levels (CMOS)	45
Table 20: CT Type-A Input Levels	46
Table 21: CT Type-B Input Levels	47
Table 22: CT Type-C Input Levels (CMOS)	47
Table 23: CT Type-D Input Levels	48
Table 24: Differential Input Swing Requirements for CK, t, CK_c	49
Table 25: Minimum Time AC Time ^t DVAC for CK Table 26: Single-Ended Requirements for CK	50
Table 26: Single-Ended Requirements for CK	51
Table 27: CK Differential Input Slew Rate Definition	51
Table 28: Cross Point Voltage For CK Differential Input Signals at DDR4-1600 through DDR4-2400 Table 29: Cross Point Voltage For CK Riffo ential Input Signals at DDR4-2666 through DDR4-3200	52
Table 29: Cross Point Voltage For CK Ratio ential Input Signals at DDR4-2666 through DDR4-3200	52
Table 30: DDR4-1600 through DDR+2400 Differential Input Swing Requirements for DQS_t, DQS_c	54
Table 31: DDR4-2633 through DDR4-3200 Differential Input Swing Requirements for DQS_t, DQS_c	54
Table 32: Cross Point Voltage For Nifferential Input Signals DQS	55
Table 33: DQS Differential Apput Slew Rate Definition	56
Table 34: DDR4-1600 through DDR4-2400 Differential Input Slew Rate and Input Levels for DQS_t, DQS_c	
Table 35: DDR4-2666 through DDR4-3200 Differential Input Slew Rate and Input Levels for DQS_t, DQS_c	
Table 36: ADDR, CMD, CNTL Overshoot and Undershoot/Specifications	
Table 37: CK Overshoot and Undershoot/ Specifications	59
Table 38: Data, Strobe, and Mask Overshoot and Undershoot/ Specifications	
Table 39: Single-Ended Output Levels	
Table 40: Single-Ended Output Slew Rate Definition	
Table 41: Single-Ended Output Slew Rate	
Table 42: Differential Output Levels	
Table 43: Differential Output Slew Rate Definition	
Table 44: Differential Output Slew Rate	
Table 45: Connectivity Test Mode Output Levels	
Table 46: Connectivity Test Mode Output Slew Rate	
Table 47: Strong Mode (34 Ω) Output Driver Electrical Characteristics	
Table 48: Weak Mode (48Ω) Output Driver Electrical Characteristics	
Table 49: Output Driver Sensitivity Definitions	
Table 50: Output Driver Voltage and Temperature Sensitivity	69

Features Table 59: Thermal Characteristics Table 62: I_{DD1} Measurement-Loop Pattern Table 63: I_{DD2N}, I_{DD3N}, and I_{PP3P} Measurement-Loop Pattern Table 64: I_{DD2NT} and I_{DD02NT} Measurement-Loop Pattern Table 65: I_{DD4R} and I_{DD04R} Measurement-Loop Pattern Table 66: I_{DD4W} Measurement-Loop Pattern 90 Table 67: I_{DD4Wc} Measurement-Loop Pattern Table 86: Address Pin Mappin **'......**142 Table 95: Address Pin Mapping154

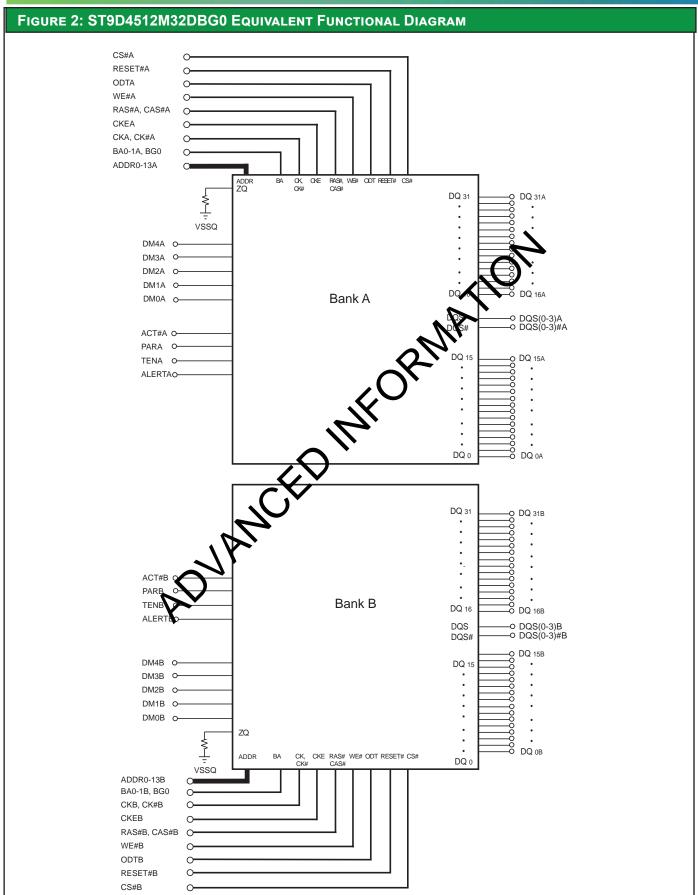
	Features
Table 103: Auto Self Refresh Mode	177
Table 104: MR3 Setting for the MPR Access Mode	179
Table 105: DRAM Address to MPR UI Translation	179
Table 106: MPR Page and MPRx Definitions	180
Table 107: MPR Readout Serial Format	182
Table 108: MPR Readout – Parallel Format	183
Table 109: MPR Readout Staggered Format	185
Table 110 Mode Register Setting for CA Parity	
Table 111: V _{REFDO} Range and Levels	
Table 112: V _{REFDO} Settings (V _{DDO} = 1.2V)	212
Table 113: Connectivity Mode Pin Description and Switching Levels	
Table 114: MAC Encoding of MPR Page 3 MPR3	216
Table 115: Normal ^t REFI Refresh (TCR Disabled)	220
Table 116:Normal ^t REFI Refresh (TCR Enabled)	221
Table 117: MRS Definition	222
Table 118: REFRESH Command Truth Table	222
Table 119: ^t REFI and ^t RFC Parameters	223
Table 114: MAC Encoding of MPR Page 3 MPR3 Table 115: Normal ¹REFI Refresh (TCR Disabled) Table 116:Normal ¹REFI Refresh (TCR Enabled) Table 117: MRS Definition Table 118: REFRESH Command Truth Table Table 119: ¹REFI and ¹RFC Parameters Table 120: Power-Down Entry Definitions Table 121: CRC Error Detection Coverage Table 122: CRC Data Mapping for BL8 Table 123: CRC Data Mapping for BC4 Table 124: DBI vs. DM vs. TDQS Function Matrix Table 125: DBI Write, DQ Frame Format Table 126: DBI Read, DQ Frame Format Table 127: DM vs. TDQS vs. DBI Function Matrix Table 128: Data Mask, DQ Frame Format Table 128: Data Mask, DQ Frame Format Table 129: CWL Selection	232
Table 121: CRC Error Detection Coverage	244
Table 122: CRC Data Mapping for BL8	247
Table 123: CRC Data Mapping for BC4	248
Table 124: DBI vs. DM vs. TDQS Function Matrix	252
Table 125: DBI Write, DQ Frame Format	252
Table 126: DBI Read, DQ Frame Format	252
Table 127: DM vs. TDQS vs. DBI Function Matrix	253
Table 128: Data Mask, DQ Frame Format	253
Table 129: CWL Selection	255
Table 130: DDR4 Bank Group Timing Examples	260
Table 131: Termination State Table	325
Table 129: CWL Selection	325
Table 133: ODT Latency at DDR4-1600/-1866/-2133/-2400/-2666/-3200	326
Table 134: Dynamic ODT Latencies and Timing (1 ^t CK Preamble Mode and CRC Disabled)	329
Table 135: Dynamic ODT Latencies and Timing with Preamble Mode and CRC Mode Matrix	330
Table 136: Speed Options	332
Table 137: Width Options	332
Table 138: Die Revision Ossioi	33/

General Notes and Description

Description

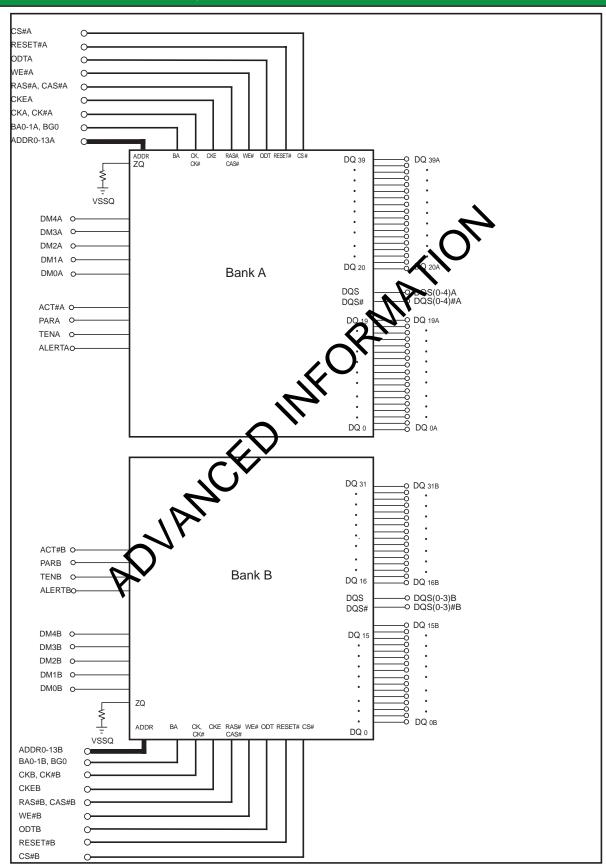
This DDR4 SDRAM Module is a high-speed dynamic random-access memory internally configured as an eight-bank DRAM. The module uses an 8*n*-prefetch architecture to achieve high-speed operation. The 8*n*-prefetch architecture is combined with an interface to transfer two data words per clock cycle at the I/O pins.

A single READ or WRITE operation for the DDR4 SDRAM consists of a single 8n-bit wide, four-clock data transfer at the internal DRAM core and two corresponding n-bit wide, one-half-clock-cycle data transfers at the I/O pins. on page


Extended Temperatures

Industrial temperature (IT) device operation requires that he case temperature not exceed below –40°C or above 95°C. JEDEC specifications teg ire the refresh rate to double when TC exceeds 85°C; this also requires use of the high-temperature self refresh option. Above 95°C the required refresh rate requirement again doubles. Additionally, ODT resistance and the input/output impedance to use be derated when operating outside of the commercial temperature range, when \$\frac{1}{2}\$ is between -40°C and 70°C.

General Notes


- The functionality and the time g specifications discussed in this data sheet are for the DLL enabled mode of operation (normal operation), unless stated otherwise.
- Throughout the data sheet the various figures and text refer to DQs as "DQ." The DQ
- term is to be interpreted as any and all DQ collectively, unless specifically stated otherwise.
- The terms "_t" and "_c" are used to represent the true and complement of a differential signal part.
- The term in is used to represent a signal that is active LOW.
- The terms "DQS" and "CK" found throughout the data sheet are to be interpreted as DQS_LDQS_c and CK_t, CK_c respectively, unless specifically stated otherwise.
- Any specific requirement takes precedence over a general statement.
- Any functionality not specifically stated is considered undefined, and not supported, and may result in unknown operation.
- Addressing is denoted as BG[n] for bank group, BA[n] for bank address, and A[n] for row/col address.
- The NOP command is only allowed when exiting maximum power savings mode or when entering gear-down mode, and only a DES command should be used.
- Not all specifications listed are finalized industry standards; best estimates are provided when an industry standard has not been finalized.
- The Module must reach a stable V_{DD} level and CKE must be toggled at least once every $8192 \times {}^{t}$ REFI for proper operation. In the event CKE is tied HIGH, toggling CS_n at least once every $8192 \times {}^{t}$ REFI is an acceptable alternative. Placing the DRAM into self refresh alleviates the need to toggle CKE.

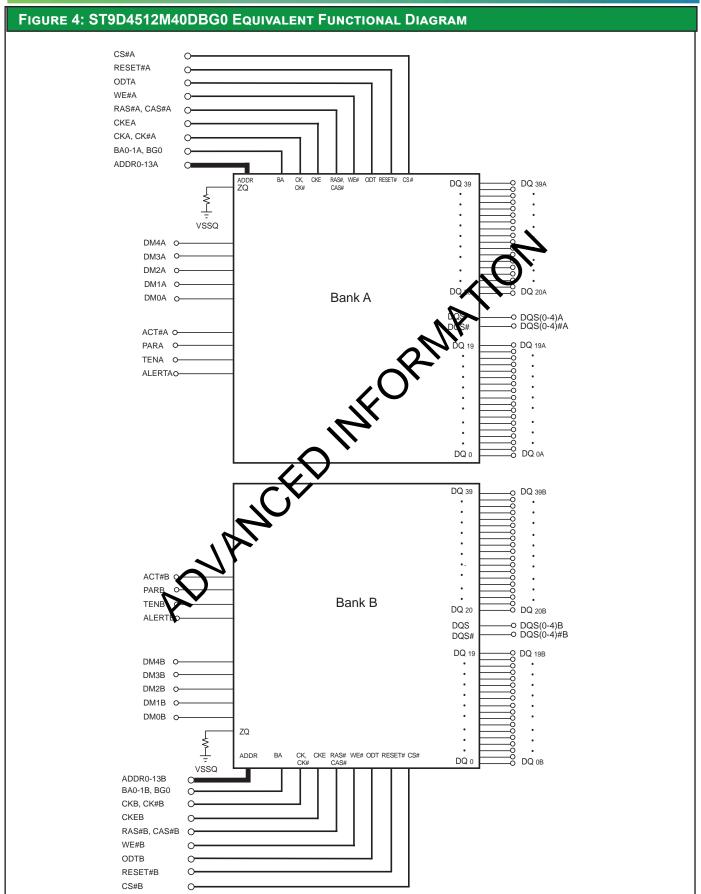
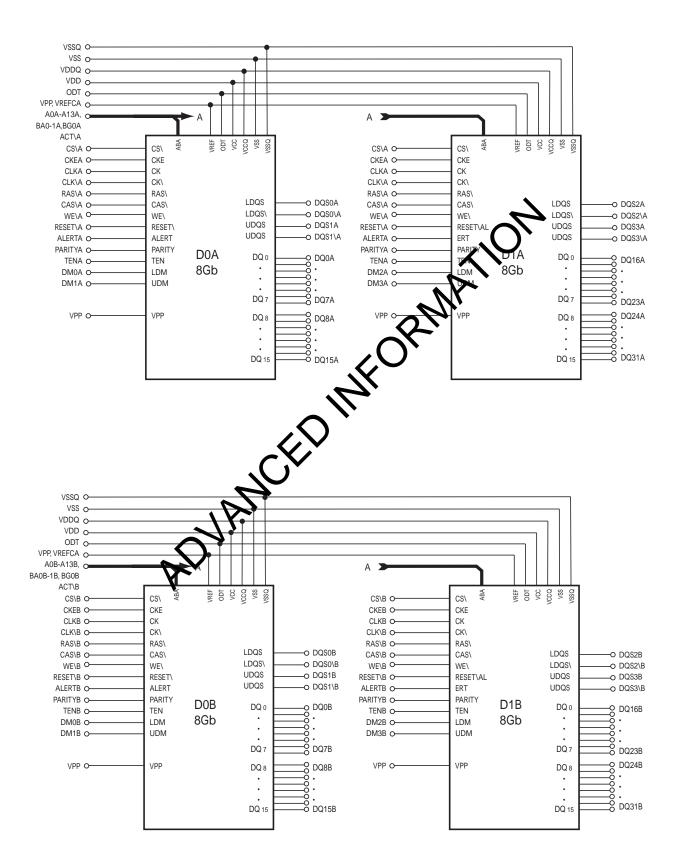


FIGURE 3: ST9D4512M72SBG0 EQUIVALENT FUNCTIONAL DIAGRAM



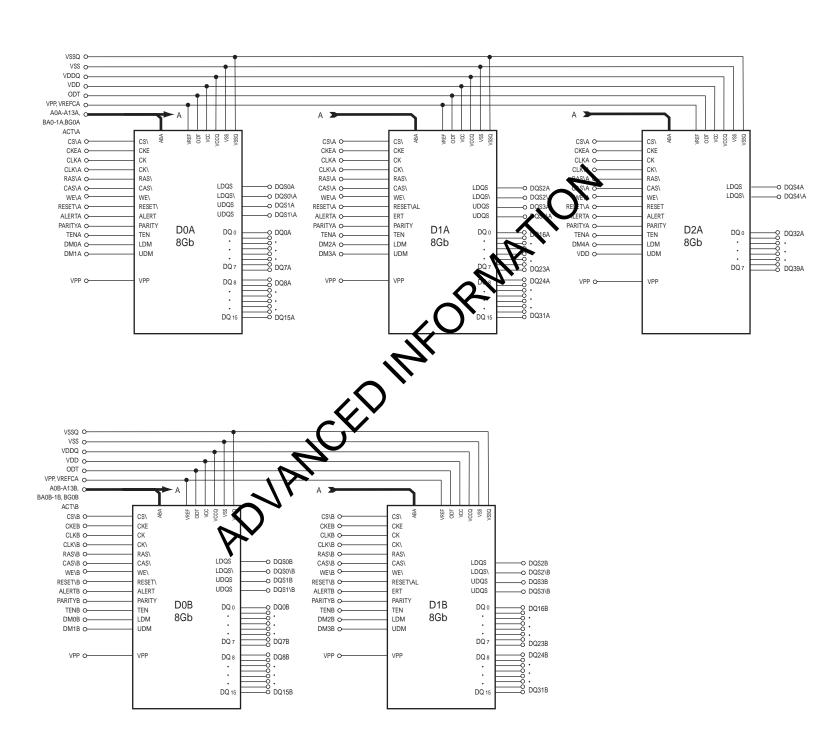


FIGURE 5: ST9D4512M32DBG0 DETAILED ELECTRICAL DIAGRAM

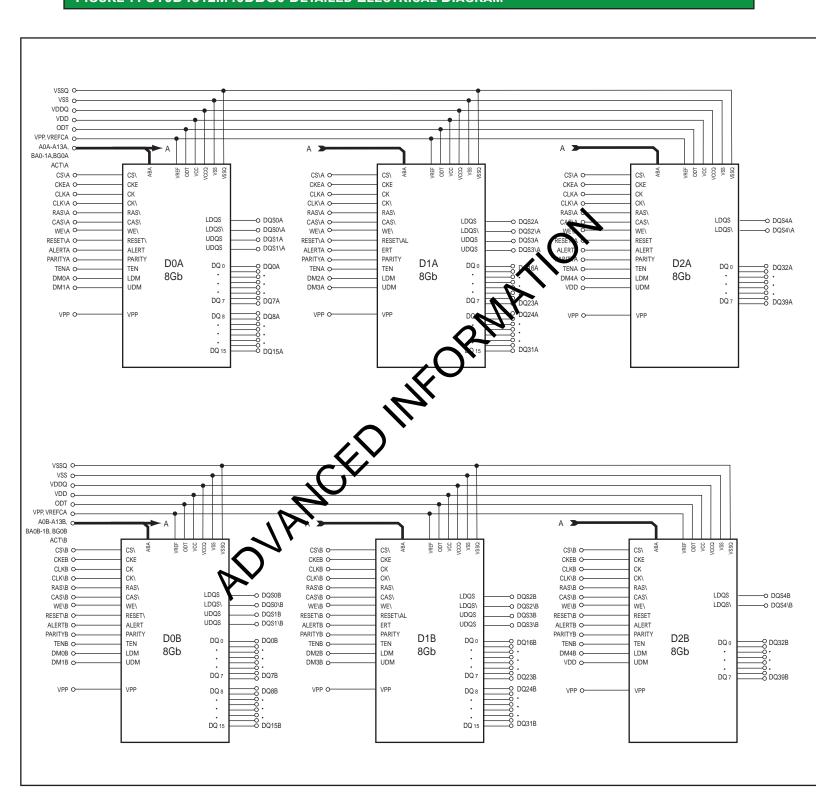


FIGURE 6: ST9D4512M72SBG0 DETAILED ELECTRICAL DIAGRAM

FIGURE 7: ST9D4512M40DBG0 DETAILED ELECTRICAL DIAGRAM

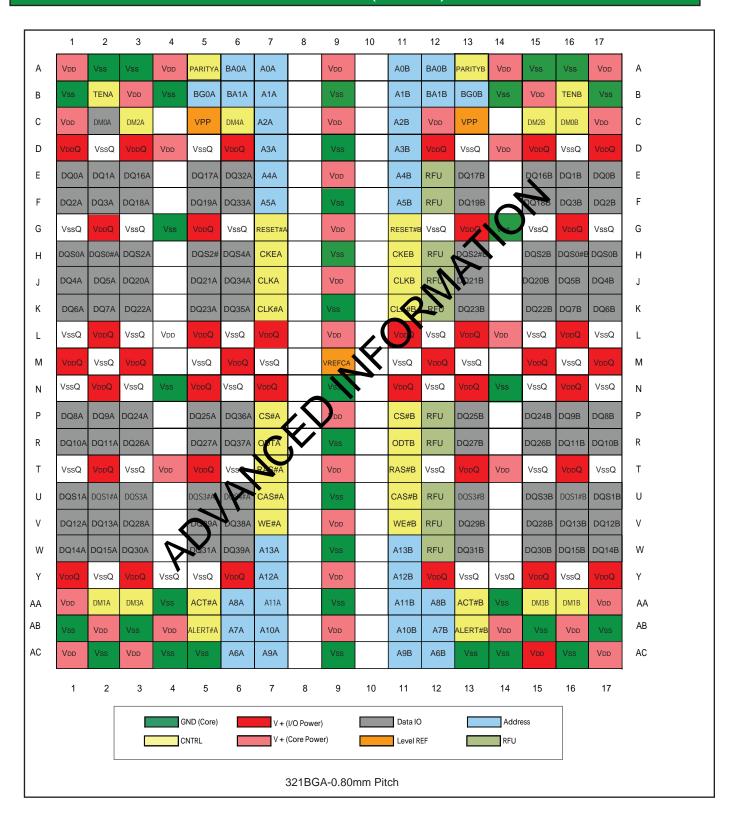
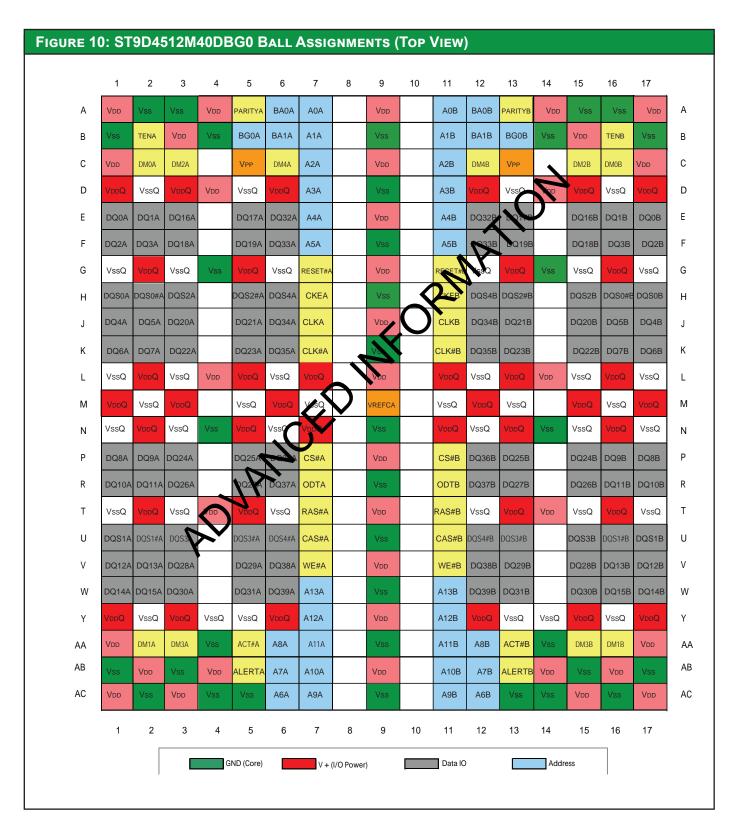

General Notes and Description

FIGURE 8: ST9D4512M32DBG0 BALL ASSIGNMENTS (TOP VIEW) 2 3 6 9 10 12 13 15 16 BA0A AOA VDD A0B BA0B VDD VDD ARIT ARITYE VDD TENA BG0A BA1A A1A BG0B С DM2A RFU A2A VDD A2B RFU DM2B С D VssQ VssQ АЗА A3B VssQ VssQ D DQ16A A4A RFU VDD A4B RFU DQ17B DQ16E DQ1B Ε DQ19A A5B DQ2A DQ3A DQ18A RFU Q19B DQ18E VssQ RESET# G DQS2 RFU CKEA CKEB RFU QS0 Н DQ4A DQ5A DQ20A CLKA VDD CLKB RFU DQ6A DQ7A DQ22A DQ23A LK#A CLK#B DQ6B VssQ VssQ VssQ VssQ М VssQ VssQ VssQ /ssO VssQ VssQ VssQ VssQ Ν DQ9A DQ25B DQ8A RFU DQ9B DQ10 DQ10B VssQ VssQ VssQ RAS#B VssQ VssQ VssQ DQS3#B DQS1#B U IJ DQS1. RFU CAS#B RFU DQS3E DQS1B DQ13A RFU WE#B RFU DQ13B DQ28A DQ29B DQ28E DQ12B DQ14 Q15A A13B DQ31B DQ30E DQ15E DQ14B VssQ VDD A12B VssQ A11A ACT#B AA VDD. A11B A8B DM3B DM1B VDD AA ΑB AB A7A A10A VDD A10B A7B ALERTB AC A9A A9B A6B AC VDD 11 Data IO V + (I/O Power) 321BGA-0.80mm Pitch



Ball Assignments

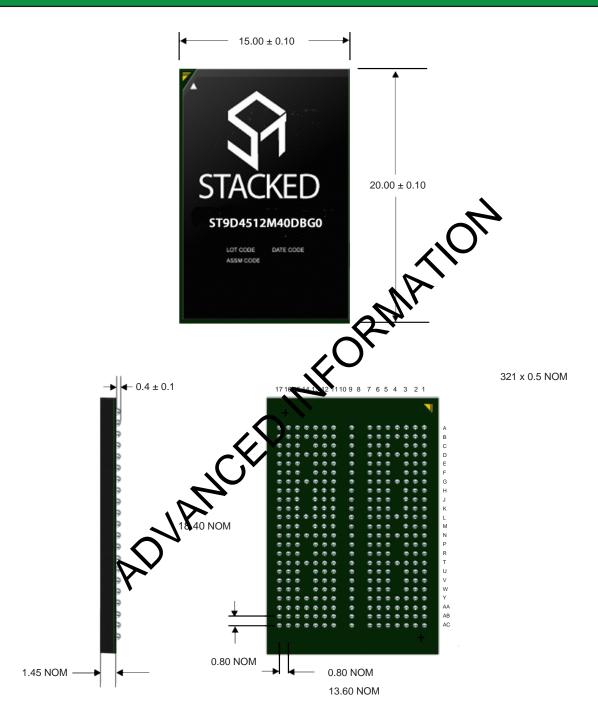
FIGURE 9: ST9D4512M72SBG0 BALL ASSIGNMENTS (TOP VIEW)

Ball Descriptions

Symbol	Туре	Description
[9:0; A11:A13]	Input	Address inputs: Provide the row address for ACTIVATE commands and the column address for READ/WRITE commands to select one location out of the memory array in the respective bank. (A10/AP, A12/BC_n, WE_n/A14, CAS_n/A15, RAS_n/A16 have additional functions - see individual entries in this table.) The address inputs also provide the op-code during the MODE REGISTER SET command.
A10/AP	Input	Auto precharge: A10 is sampled during READ and WRITE companies to determine whether auto precharge should be performed to the accessed bank after a READ or WRITE operation. (HIGH = auto precharge; LOW = no auto precharge.) A10 is sampled during a PRECHARGE command to determine whether the PRECHARGE applies to one bank (A10 LOW) or all banks (A10 HIGH). You one bank is to be precharged, the bank is selected by the bank group and bank addresses.
A12/BC_n	Input	Burst chop: A12/BC_n is sampled during READ and WRITE commands to determine if burst chop (on-the-fly) will be performed. (HIGH = no burst chop; LOW = burst chopped). See the Command Truth Table.
ACT_n	Input	Command input: ACT_n indicates an ACTIVATE command. When ACT_n (along with CS_n) is LOW, the input pine BAS_n/A16, CAS_n/A15, and WE_n/A14 are treated as row address inputs for the ACTIVATE command. When ACT_n is HIGH (along with CS_n LOW), the input pins RAS_n/A16, CAS_n/A15, and WE_n/A14 are treated as normal command that use the RAS_n, CAS_n, and WE_n signals. See the Command Truth Table
BA[1:0]	Input	Bank addiess it puts: Define the bank (within a bank group) to which an ACTIVATE, READ WIPSE, or PRECHARGE command is being applied. Also determines which middle register is to be accessed during a MODE REGISTER SET command.
BG[0]	Input	can group address inputs: Define the bank group to which a REFRESH, ACTIVATE, READ, WRITE, or PRECHARGE command is being applied. Also determines which mode register is to be accessed during a MODE REGISTER SET command.
CO/CKE1, C1/CS1_n, C2/ODT1	Input	Stack address inputs: These inputs are used to select the second rank in stacked devices. These pins reserved for future use and not utilized on ST9D4512M72BG0 or ST9D4512M80BG0.
CK_t, CK_c	Input	Clock: Differential clock inputs. All address, command, and control input signals are sampled on the crossing of the positive edge of CK_t and the negative edge of CK_c.

Ball Descriptions

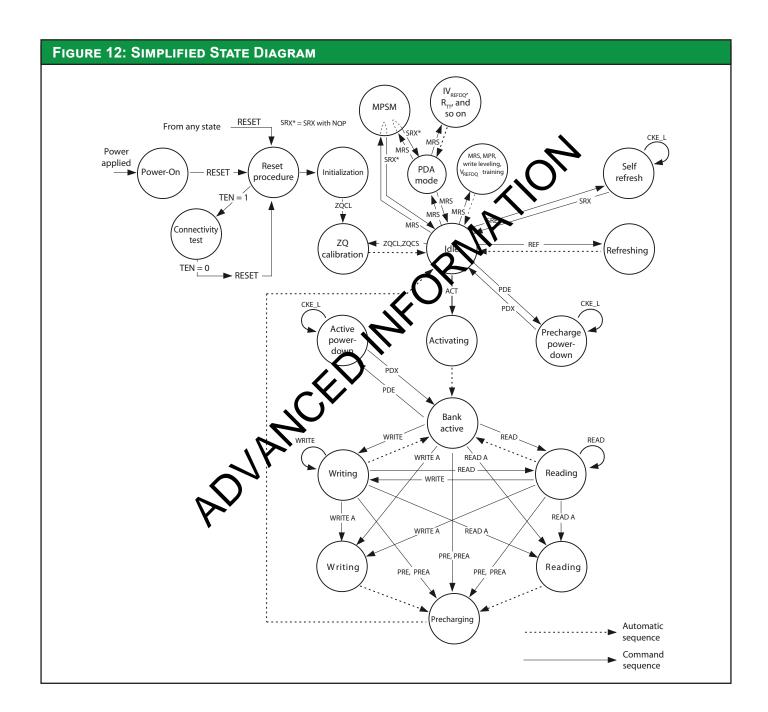
Symbol	Туре	Description
CKE	Input	Clock enable: CKE HIGH activates and CKE LOW deactivates the internal clock signals, device input buffers, and output drivers. Taking CKE LOW provides PRECHARGE POWER-DOWN and SELF REFRESH operations (all banks idle), or active power-down (row active in any bank). CKE is asynchronous for self refresh exit. After VREFCA has become stable during the power-on and initialization sequence, it must be maintained during all operations (including SELF REFRESH). CKE must be maintained HIGH throughout read and write accesses. Input buffers (excluding CK_t, CK_c, ODT, RESET_n, and CKE) are disabled during power-down. Input buffers (excluding CKE and RESET_n) are disabled during self refresh.
CS_n	Input	Chip select: All commands are masked when CS_n is registered HIGH. CS_n provides for external rank selection on systems with multiple ranks. CS_n is considered part of the command code.
DM[4:0]_n,	Input	Input data mask: DM_n is an input mask signal for Write data. Input data is masked when DM is sampled LOW coincident with that input data during a write access. DM is sampled on both edges of DQS.
ODT	Input	On-die termination: ODT (registered) HIGH) enables termination resistance internal to the DDR4 SDRAM. When enabled, ODT (RTT) is applied only to each DQ, DQS_t, DQS_c, DM_n/DBI_n/TDQS_t, and TDQS_c signal for the x4 and x8 configurations (when the TDQS function is enabled via mode register). For the x16 configuration, R TT is applied to each PQ_DQSU_t, DQSU_c, DQSL_t, DQSL_c, UDM_n, and LDM_n signal. The ODT pin will be ignored if the mode registers are programmed to disable R TT.
PAR	Input	Parity for compared and address: This function can be enabled or disabled via the mode register. When enabled, the parity signal covers all command and address inputs, including ACT_n, RAS_n/A16, CAS_n/A15, WE_n/A14, A[17:0], A10/AP, A12/BC_n, BA[1:0], and BG[1:0] with C0, C1, and C2 on 3DS only devices. Control pins NOT covered by the parity signal are CS_n, CKE, and ODT. Unused address pins that are densityald configuration-specific should be treated internally as 0s by the DRAM parity logic. Command and address inputs will have parity check performed when commands are latched via the rising edge of CK_t and when CS_n is LOW.
RAS_n/A16 CAS_n/A15, WE_n/A14	Inpat	Command inputs: RAS_n/A16, CAS_n/A15, and WE_n/A14 (along with CS_n and ACT_n) define the command and/or address being entered. See the ACT_n description in this table.
RESET_n	Input	Active LOW asynchronous reset: Reset is active when RESET_n is LOW, and inactive when RESET_n is HIGH. RESET_n must be HIGH during normal operation. RESET_n is a CMOS rail-to-rail signal with DC HIGH and LOW at 80% and 20% of VDD
TEN	Input	Connectivity test mode: TEN is active when HIGH and inactive when LOW. TEN must be LOW during normal operation. TEN is a CMOS rail-to-rail signal with DC HIGH and LOW at 80% and 20% of VDD



Ball Descriptions

Symbol	Туре	Description
DQ[39:0]	I/O	Data input/output: Bidirectional data bus. If write CRC is enabled via mode register, the write CRC code is added at the end of data burst.
		π
DBI[4:0]_n,	I/O	DBI input/output: Data bus inversion. DBI_n is an input/output signal used for data bus inversion. DBI can be configured for both READ (output) and WRITE (input) operations depending on the mode register settings. The DM, DBI, and TDQS functions are enabled by mode register settings.
DQS5:0]_t, DQS[5:0]_c,	I/O	Data strobe: Output with READ data, input with WANTE data. Edge-aligned with READ data, centered-aligned with WRITE data LOR4 SDRAM supports a differential data strobe only and does not support a single -exceed data strobe.
ALERT_n	Output	Alert output: This signal allows the DRAM to indicate to the system's memory controller that a specific alert of event has occurred. Alerts will include the command/address parity error and the CRC data error when either of these functions is enabled in the mode register.
	4	IRICK
Vpp	Subs	Power supply: 1.2V +0.060V
V _{DD}	Supply	Power supply: 1.2V ±0.060V. DO power supply: 1.2V ±0.060V.
V_{DDQ}	Supply	DQ power supply: 1.2V ±0.060V.
V _{DDQ} V _{PP}	Supply Supply	DQ power supply: 1.2V ±0.060V. DRAM activating power supply: 2.5V -0.125V/+0.250V.
V _{DDQ} V _{PP} V _{REFCA}	Supply Supply Supply	DQ power supply: 1.2V ±0.060V. DRAM activating power supply: 2.5V -0.125V/+0.250V. Reference voltage for control, command, and address pins.
V _{DDQ} V _{PP}	Supply Supply	DQ power supply: 1.2V ±0.060V. DRAM activating power supply: 2.5V -0.125V/+0.250V.
V _{DDQ} V _{PP} V _{REFCA} V _{SS}	Supply Supply Supply Supply	DQ power supply: 1.2V ±0.060V. DRAM activating power supply: 2.5V –0.125V/+0.250V. Reference voltage for control, command, and address pins. Ground.

FIGURE 11: BG0 PACKAGE DIMENSIONS



Note: All dimensions in mm

State Diagram

This state diagram provides an overview of the state transitions and the commands to control them. Situations involving more than one bank, the enabling or disabling of on-die termination, and certain other events are not captured in full detail.

Command	Description
ACT	Active
MPR	Multipurpose register
MRS	Mode register set
PDE	Enter power-down
PDX	Exit power-down
PRE	Precharge
PREA	Precharge all
READ	RD, RDS4, RDS8
READ A	RDA, RDAS4, RDAS8
REF	Refresh, fine granularity refresh
RESET	Start reset procedure
SRE	Self refresh entry
SRX	Self refresh exit
TEN	Self refresh exit Boundary scan mode enable
WRITE	WR, WRS4, WRS8 with/without CRC
WRITE A	WRA, WRAS4, WRAS8 with/without CRC
ZQCL	ZQ calibration long
ZQCS	ZQ calibration short
	Note: 1. See the Command 71th Table for more details.

Functional Description

This DDR4 SDRAM Module is a high-speed dynamic random-access memory internally configured as eight banks in 2 bank groups. The device uses double data rate (DDR) architecture to achieve high-speed operation. DDR4 architecture is an 8n-prefetch architecture with an interface designed to transfer two data words per clock cycle at the I/O pins. A single read or write access for a device module effectively consists of a single 8n-bit-wide, four-clock cycle data transfer at the internal DRAM core and eight corresponding n-bit wide, one half clock cycle data transfers at the I/O pins.

Read and write accesses to the device are burst-oriented. Accesses start at a selected location and continue for a burst length of eight or a chopped burst of four in a programmed sequence. Operation begins with the registering an

ACTIVE command, then followed by a READ or WRITE command. The address bits registered coincident with the ACTIVE command are used to select the bank and row to be accessed; BG0 selects the bank group, BA[1:0] select the bank, and A[15:0] selects the row. The address bits registered coincident with the READ or WRITE command select the starting column location for the burst operation, determine if the auto PRECHARGE command is to be issued (via A10), and select BC4 or BL8 mode on-the-fly (OTF) (via A12) if enabled in the mode register.

Prior to normal operation, the device must be powered up and initialized. The following provides detailed information covering device reset and initialization, register definitions, command descriptions, and device operation.

NOTE: The use of the NOP command is allowed only when exiting maximum power saving mode or when entering gear-down mode.

To ensure proper device function, the power-up and reset initialization refault values for the following mode register (MR) settings are defined as:

- Gear-down mode (MR3 A[3]): 0 = 1/2 rate
- DRAM addressability (MR3 A[4]): 0 = disable
- Maximum power-saving mode (MR4 A[1]): 0 = disabl
- CS to command/address latency (MR4 A[8:6]): 000 = disable
- CA parity latency mode (MR5 A[2:0]): 000 = disable

Electrical Specifications

Absolute Ratings

Stresses greater than those listed may cause permanent damage to the device. This is a stress rating only, and functional operation of the device at these or any other conditions outside those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may adversely affect reliability. Although "unlimited" row accesses to the same row is allowed within the refresh period; excessive row accesses to the same row over a long term can result in degraded operation.

Table 5: Absolute Maximum Ratings						
Symbol	Parameter	Min	Max	Unit	Notes	
V _{DD}	Voltage on V _{DD} pin relative to V _{SS}	-0	1.5	V	1	
V_{DDQ}	Voltage on V _{DDQ} pin relative to V _{SS}	-0.2	1.5	V	1	
V _{PP}	Voltage on V _{PP} pin relative to V _{SS}	-0.4	3.0	V	3	
V _{IN} , V _{OUT}	Voltage on any pin relative to V _{SS}	-0.4	1.5	V		
T _{STG}	Storage temperature	-55	150	°C	2	

- Notes: 1. VDD and VDDQ must be within 300p each other at all times, and VREF must not be VDDQ are <500mV, VREF can be ≤300mV. greater than 0.6 × VDDQ. When '
 - 2. Storage temperature is the case te temperature on the center/top side of the DRAM. For the measuremen ons, please refer to the JESD51-2 standard.
 - than VDD/VDDO at all times when powered. 3. VPP must be equal to

DRAM Component Operating Temperature Range

Operating temperature, TOPER, is the case co temperature on the center/top side of the DRAM. For measurement conditions, refer to the JEDEC doci ESD51-2.

Table 6: Temperature Range					
Symbol	Parameter	Min	Max	Unit	Notes
T _{OPER}	Normal operating temperature range	0	85	°C	1
	Extended temperature range (optional)>85	>85	95	°C	2

- 1. The normal temperature range specifies the temperatures at which all DRAM specifications will be supported. During operation, the DRAM case temperature must be maintained between 0°C to 85°C under all operating conditions for the commercial offering; The industrial temperature offering allows the case temperature to go below 0°C to -40°C.
- 2. Some applications require operation of the commercial and industrial temperature DRAMs in the extended temperature range (between 85°C and 95°C case temperature). Full specifications are supported in this range, but the following additional conditions apply:
 - REFRESH commands must be doubled in frequency, reducing the refresh interval ^tREFI to 3.9µs. It is also possible to specify a component with 1X refresh (^tREFI to 7.8µs) in the extended temperature range.

Electrical Characteristics – AC and DC Operating Conditions

• If SELF REFRESH operation is required in the extended temperature range, it is mandatory to use either the manual self refresh mode with extended temperature range capability (MR2[6] = 0 and MR2 [7] = 1) or enable the optional auto self refresh mode (MR2 [6] = 1 and MR2 [7] = 1).

Electrical Characteristics – AC and DC Operating Conditions

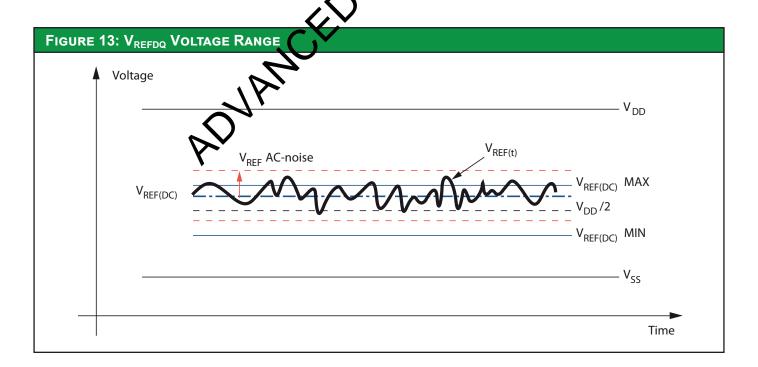
Supply Operating Conditions

Table 7: Recommended Supply Operating Conditions							
			Rating				
Symbol	Parameter	Min	Тур	Max	Unit	Notes	
V_{DD}	Supply voltage	1.14	1.2	1.26	V	1, 2, 3, 4, 5	
V_{DDQ}	Supply voltage for output	1.14	1.2	1.26	V	1, 2, 6	
V_{PP}	Wordline supply voltage	2.375	2.5	2.750	V	7	

- Notes: 1. Under all conditions V_{DDQ} must be less equal to V_{DD}.
 - 2. V_{DDQ} tracks with V_{DD}. AC parameter e Neasured with V_{DD} and V_{DDQ} tied together.
 - % of V_{DD} ,min shall be between 0.004 V/ms and 600 3. V_{DD} slew rate between 300mV and V/ms, 20 MHz band-limited measure nent.
 - 4. V_{DD} ramp time from 300mV o Y_{DD.min} shall be no longer than 200ms.
 - 5. A stable valid V_{DD} level is C level (0 Hz to 250 KHz) and must be no less than $\overline{V}_{DD,max}$. If the set DC level is altered anytime after initializa-V_{DD min} and no greater**↑** d calibrations must be performed again after the new set DC level is final. AC noise of ±60 mV (greater than 250 KHz) is allowed on V_{DD} provided the noise ss than V_{DD,min} or greater than V_{DD,max}. doesn't alter V_Dto
 - level is a set DC level (0 Hz to 250 KHz) and must be no less than V_{DDQ,min}¶ greater than V_{DDO.max}. If the set DC level is altered anytime after initiali-LL reset and calibrations must be performed again after the new set DC al. AC noise of ±60mV (greater than 250 KHz) is allowed on V_{DDO} provided the doesn't alter V_{DDQ} to less than $V_{DDQ,min}$ or greater than $V_{DDQ,max}$.
 - able valid V_{PP} level is a set DC level (0 Hz to 250 KHz) and must be no less than $_{PP,min}$ and no greater than $V_{PP,max}$. If the set DC level is altered anytime after initializaion, the DLL reset and calibrations must be performed again after the new set DC level is final. AC noise of ± 120 mV (greater than 250 KHz) is allowed on V_{PP} provided the noise doesn't alter V_{PP} to less than $V_{PP\,min}$ or greater than $V_{PP\,max}$.

TABLE 8: V _{DD} SLEW RATE						
Symbol	Min	Max	Unit	Notes		
$V_{\mathrm{DD_sl}}$	0.004	600	V/ms	1, 2		
V _{DD_on}	-	200	ms	3		

- Notes: 1. Measurement made between 300mV and 80% V_{DD} (minimum level).
 - 2. The DC bandwidth is limited to 20 MHz.
 - 3. Maximum time to ramp V_{DD} from 300 mV to V_{DD} minimum.


Table 9: Leakage					
Condition	Symbol	Min	Max	Unit	Notes
Input leakage (excluding ZQ and TEN)	I _{IN}	-4	4	μΑ	1
ZQ leakage	I _{ZQ}	-6	6	μΑ	2
TEN leakage	I _{TEN}	-12	20	μΑ	1, 2
V _{REFCA} leakage	I _{VREFCA}	-4	4	μΑ	3
Output leakage: V _{OUT} = V _{DDQ}	I _{OZpd}	_	10	μΑ	4
Output leakage: V _{OUT} = V _{SSQ}	I _{OZpu}	-50	_	μΑ	4, 5

- Notes: 1. Input under test 0V < VIN < 1.1V.
 - 2. Additional leakage due to weak pull-down.
 - 3. $V_{REFCA} = V_{DD}/2$, V_{DD} at valid level after initialization.
 - 4. DQs are disabled.
 - 5. ODT is disabled with the ODT input HIGH.

V_{REFCA} Supply

 V_{REFCA} is to be supplied to the DRAM and equal to $V_{DD}/2$. The V_{REF} erence supply input and therefore does not draw biasing current.

The DC-tolerance limits and AC-noise limits for the reference you V_{REFCA} are illustrated in the figure below. The figure shows a valid reference voltage $V_{REF(t)}$ as a function of time (V_{REF} stands for $V_{REF(DC)}$) is the linear average of $V_{REF(t)}$ over a very long period of time (1 ce and). This average has to meet the MIN/MAX require- $R_{EF(DC)}$ by no more than ±1% V_{DD} for the AC-noise ments. Furthermore, V_{REF(t)} may temporarily deviate fr limit.

The voltage levels for setup and hold time measurements are dependent on V_{REF} . V_{REF} is understood as $V_{REF(DC)}$, as defined in the above figure. This clarifies that DC-variations of V_{REF} affect the absolute voltage a signal has to reach to achieve a valid HIGH or LOW level, and therefore, the time to which setup and hold is measured. System timing and voltage budgets need to account for $V_{REF(DC)}$ deviations from the optimum position within the dataeye of the input signals. This also clarifies that the DRAM setup/hold specification and derating values need to include time and voltage associated with V_{REF} AC-noise. Timing and voltage effects due to AC-noise on V_{REF} up to the specified limit ($\pm 1\%$ of V_{DD}) are included in DRAM timings and their associated deratings.

V_{REFDQ} Supply and Calibration Ranges

The device internally generates its own V_{REFDQ} . DRAM internal V_{REFDQ} specification parameters: voltage range, step size, V_{REF} step time, V_{REF} full step time, and V_{REF} valid level are used to help provide stimated values for the internal V_{REFDQ} and are not pass/fail limits. The voltage operating range specifies (the minimum required range for DDR4 SDRAM devices. The minimum range is defined by $V_{REFDQ,min}$ and $V_{REFDQ,min}$ are the imminimum range is defined by $V_{REFDQ,min}$ and $V_{REFDQ,min}$ and $V_{REFDQ,min}$ and $V_{REFDQ,min}$ and $V_{REFDQ,min}$ are the imminimum range is defined by $V_{REFDQ,min}$ and $V_{REFDQ,min}$ and $V_{REFDQ,min}$ and $V_{REFDQ,min}$ and $V_{REFDQ,min}$ are the imminimum range is defined by $V_{REFDQ,min}$ and $V_{REFDQ,min}$ and $V_{REFDQ,min}$ are the imminimum range is defined by $V_{REFDQ,min}$ and $V_{REFDQ,min}$ are the imminimum range is defined by $V_{REFDQ,min}$ and $V_{REFDQ,min}$ are the imminimum range is defined by $V_{REFDQ,min}$ and $V_{REFDQ,min}$ are the imminimum range is defined by $V_{REFDQ,min}$ and $V_{REFDQ,min}$ are the imminimum range is defined by $V_{REFDQ,min}$ and $V_{REFDQ,min}$ are the imminimum range is defined by $V_{REFDQ,min}$ and $V_{REFDQ,min}$ are the imminimum range is defined by $V_{REFDQ,min}$ and $V_{REFDQ,min}$ are the imminimum range is defined by $V_{REFDQ,min}$ and $V_{REFDQ,min}$ are the imminimum range is defined by $V_{REFDQ,min}$ and $V_{REFDQ,min}$ are the imminimum range is defined by $V_{REFDQ,min}$ and $V_{REFDQ,min}$ are the imminimum range is defined by $V_{REFDQ,min}$ and $V_{REFDQ,min}$ are the imminimum range is defined by V_{REFDQ

TABLE 10: V _{REFDQ} SPECIFICATION						
Parameter	Symbol	Min	Тур	Max	Unit	Notes
Range 1 V _{REFDQ}	V _{REFDQ}	60%	-	92%	V_{DDQ}	1, 2
Range 2 V _{REFDQ}	V_{REFDQ}	45%	-	77%	V_{DDQ}	1, 2
V _{REF}	V _{REF,step}	0.5%	-0.65%	0.8%	V_{DDQ}	3
V _{REF}	V_{REF,set_tol}	-1.625%	0%	1.625%	V_{DDQ}	4, 5, 6,
		-0.15%	0%	0.15%	V_{DDQ}	4, 7, 8,
V _{REF}	$V_{REF,time}$	-	-	150	ns	9, 10, 11
V _{REF}	V _{REF_val_tol}	-0.15%	0%	0.15%	V_{DDQ}	12

Notes

- 1. $V_{REF(DC)}$ voltage is referenced to $V_{DDQ(DC)}$. $V_{DDQ(DC)}$ is 1.2V.
- 2. DRAM range 1 or range 2 is set by the MRS6[6]6.
- 3. V_{REF} step size increment/decrement range. V_{REF} at DC lev l
- 4. $V_{REF,new} = V_{REF,old} \pm n \times V_{REF,step}$; n = number of steps. If mcrement, use "+," if decrement, use "-."
- 5. For n >4, the minimum value of V_{REF} setting to zero = $V_{REF,new}$ 1.625% \times V_{DDQ} . The maximum value of V_{REF} setting tolerance = $V_{REF,new}$ + 1.625% \times V_{DDQ} .
- 6. Measured by recording the MIN and MAX values of the V_{REF} output over the range, drawing a straight line between those points, and comparing all other VREF output settings to that line.
- 7. For n \leq 4, the minimum value of V_{REF} setting tolerance = $V_{REF,new}$ 0.15% \times V_{DDQ} . The maximum value of V_{REF} setting tolerance = $V_{REF,new}$ + 0.15% \times V_{DDQ} .
- 8. Measured by recording the LLLN and MAX values of the V_{REF} output across four consecutive steps (n = 4), drawing a straight line between those points, and comparing all V_{REF} output settings to max line.
- 9. Time from MRS command to increment or decrement one step size for V_{RFF}.
- 10. Time from MRS or mand to increment or decrement more than one step size up to the full range of $V_{\rm R}$ _F.
- 11. If the V_{REF} ponitor is enabled, V_{REF} must be derated by +10ns if DQ bus load is 0pF and an additional +15 ns/pF of DQ bus loading.
- 12. Only opplicable for DRAM component-level test/characterization purposes. Not applicable for normal mode of operation. V_{REF} valid qualifies the step times, which will be haracterized at the component level.

V_{REFDQ} Ranges

MR6[6] selects range 1 (60% to 92.5% of V_{DDQ}) or range 2 (45% to 77.5% of V_{DDQ}), and MR6[5:0] sets the V_{REFDQ} level, as listed in the following table. The values in MR6[6:0] will update the V_{DDQ} range and level independent of MR6[7] setting. It is recommended MR6[7] be enabled when changing the settings in MR6[6:0], and it is highly recommended MR6[7] be enabled when changing the settings in MR6[6:0] multiple times during a calibration routine.

Electrical Characteristics - AC and DC Single-Ended Input Measurement Levels

MR6[5:0]	MR6[6] 0 = Range 1	MR6[6] 1 = Range 2	MR6[5:0]	MR6[6] 0 = Range 1	MR6[6] 1 = Range 2
00 0000	60.00%	45.00%	01 1010	76.90%	61.90%
00 0001	60.65%	45.65%	01 1011	77.55%	62.55%
00 0010	61.30%	46.30%	01 1100	78.20%	63.20%
00 0011	61.95%	46.95%	01 1101	78.85%	63.85%
00 0100	62.60%	47.60%	01 1110	79.50%	64.50%
00 0101	63.25%	48.25%	01 1111	80.15%	65.15%
00 0110	63.90%	48.90%	10 0000	80.80%	65.80%
00 0111	64.55%	49.55%	10 0001	81.45%	66.45%
00 1000	65.20%	50.20%	10 0010	82.0%	67.10%
00 1001	65.85%	50.85%	10 0011	83.546	67.75%
00 1010	66.50%	51.50%	10 0100	83.40%	68.40%
00 1011	67.15%	52.15%	10 0101	84.05%	69.05%
00 1100	67.80%	52.80%	10 0110	84.70%	69.70%
00 1101	68.45%	53.45%	10 01 1	85.35%	70.35%
00 1110	69.10%	54.10%	10 1000	86.00%	71.00%
00 1111	69.75%	54.75%	70 1001	86.65%	71.65%
01 0000	70.40%	55.40%	10 1010	87.30%	72.30%
01 0001	71.05%	56.05%	10 1011	87.95%	72.95%
01 0010	71.70%	56.70%	10 1100	88.60%	73.60%
01 0011	72.35%	57.55%	10 1101	89.25%	74.25%
01 0100	73.00%	58.0)%	10 1110	89.90%	74.90%
01 0101	73.65%	\$8.65%	10 1111	90.55%	75.55%
01 0110	74.30%	59.30%	10 0000	91.20%	76.20%
01 0111	74.95%	59.95%	10 0001	91.85%	76.85%
01 1000	75.60%	60.60%	10 0010	92.50%	77.50%
01 1001	76.25%	61.25%		11 0011 to 11 1111 are re	eserved

Electrical Characteristics – AC and DC Single-Ended Input Measurement Levels


RESET_n Input Levels

TABLE 12: RESET_N INPUT LEVELS (CMOS)									
Parameter	Symbol	Min	Max	Unit	Note				
AC input high voltage	V _{IH(AC)_RESET}	$0.8 \times V_{DD}$	V _{DD}	V	1				
DC input high voltage	V _{IH(DC)_RESET}	$0.7 \times V_{DD}$	V _{DD}	V	2				
DC input low voltage	V _{IL(DC)_RESET}	V _{SS}	$0.3 \times V_{DD}$	V	3				

TABLE 12: RESET_N INPUT LEVELS (CMOS) (CONTINUED)									
Parameter	Symbol	Min	Max	Unit	Note				
AC input low voltage	V _{IL(AC)_RESET}	V _{SS}	$0.2 \times V_{DD}$	V	4				
Rising time	tR_RESET	_	1	μs	5				
RESET pulse width after power-up	tPW_RESET_S	1	-	μs	6, 7				
RESET pulse width during power-up	^t PW_RESET_L	200	-	μs	6				

- Notes: 1. Overshoot should not exceed the VIN shown in the Absolute Maximum Ratings table.
 - 2. After RESET_n is registered HIGH, the RESET_n level must be maintained above $V_{\text{IH(DC)}_\text{RESET}}$, otherwise operation will be uncertain until it is reset by asserting RESET_n signal LOW.
 - 3. After RESET_n is registered LOW, the RESET_n level must be maintained below V_{IL(DC)_RE-} SET during tPW_RESET, otherwise the DRAM may not be
 - 4. Undershoot should not exceed the VIN shown in the Abs ete Maximum Ratings table.
 - 5. Slope reversal (ring-back) during this level transit LOW to HIGH should be mitigated as much as possible.
 - 6. RESET is destructive to data contents.
 - 7. See RESET Procedure at Power Stable C

Command/Address Inc evels

Table 13: Command and Address Input Levels: DDR4-1600 Through DDR4-2400									
Parameter	Symbol	Min	Max	Unit	Note				
AC input high voltage	V _{IH(AC)}	V _{REF} + 100	V _{DD} 5	mV	1, 2, 3				
DC input high voltage	V _{IH(DC)}	V _{REF} + 75	V _{DD}	mV	1, 2				
DC input low voltage	V _{IL(DC)}	V _{SS}	V _{REF} - 75	mV	1, 2				
AC input low voltage	V _{IL(AC)}	V _{SS} 5	V _{REF} - 100	mV	1, 2, 3				
Reference voltage for CMD/ADDR inputs	V _{REFFCA(DC)}	$0.49 \times V_{DD}$	$0.51 \times V_{DD}$	V	4				

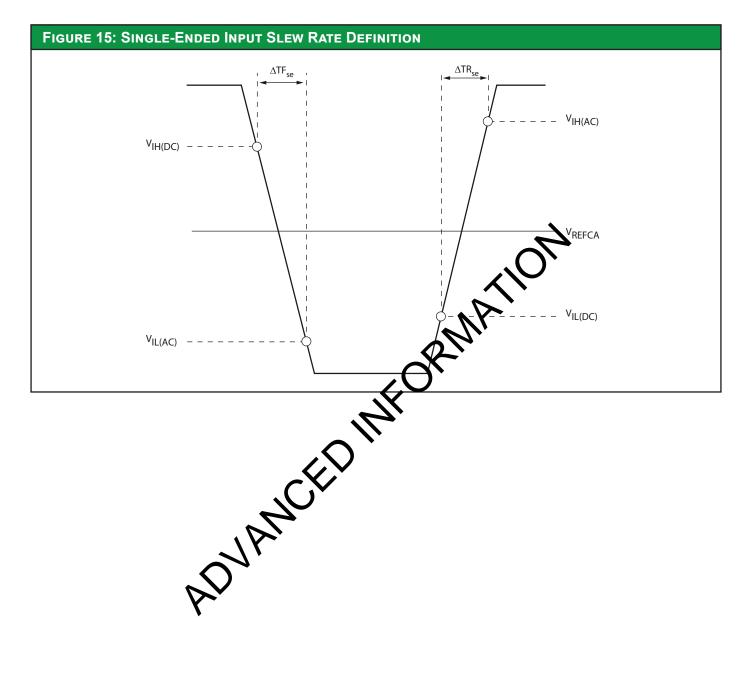
- Notes: 1. For input except RESET_n. $V_{REF} = V_{REFCA(DC)}$.
 - 2. $V_{REF} = V_{REFCA(DC)}$.
 - 3. Input signal must meet $V_{IL}/V_{IH(AC)}$ to meet tIS timings and $V_{IL}/V_{IH(DC)}$ to meet tIH timings. The AC peak noise on V_{REF} may not allow V_{REF} to deviate from $V_{REFCA(DC)}$ by more than
 - 4. $\pm 1\%$ V_{DD} (for reference: approximately ± 12 mV).
 - 5. Refer to "Overshoot and Undershoot Specifications."

Table 14: Command and Address Input Levels: DDR4-2666									
Parameter	Symbol	Min	Max	Unit	Note				
AC input high voltage	V _{IH(AC)}	V _{REF} + 90	V _{DD} 5	mV	1, 2, 3				
DC input high voltage	V _{IH(DC)}	V _{REF} + 65	V _{DD}	mV	1, 2				
DC input low voltage	V _{IL(DC)}	V _{SS}	V _{REF} - 65	mV	1, 2				
AC input low voltage	V _{IL(AC)}	V _{SS} 5	V _{REF} - 90	mV	1, 2, 3				
Reference voltage for CMD/ADDR inputs	V _{REFFCA(DC)}	$0.49 \times V_{DD}$	$0.49 \times V_{DD}$	V	4				

- Notes: 1. For input except RESET_n. $V_{REF} = V_{REFCA(DC)}$.
 - 2. $V_{REF} = V_{REFCA(DC)}$.
 - (_{IL}/V_{IH(AC)} to meet ^tIH timings. 3. Input signal must meet $V_{IL}/V_{IH(AC)}$ to meet tIS timing
 - 4. The AC peak noise on V_{REF} may not allow V_{REF} to g from V_{REFCA(DC)} by more than ±1% VDD (for reference: approximately ±12mV
 - 5. Refer to "Overshoot and Undershoot Specific

Table 15: Command and Address Input Levels: DDR4-2333 and DDR4-3200									
Parameter	Symbol	Min	Max	Unit	Note				
AC input high voltage	V _{IH(AC)}	FF - 90	V _{DD} 5	mV	1, 2, 3				
DC input high voltage	V _{IH(DC)}	V _{REF} + 65	V _{DD}	mV	1, 2				
DC input low voltage	V _{IL(DC)}	V _{SS}	V _{REF} - 65	mV	1, 2				
AC input low voltage	V _{II} AC)	V _{SS} 5	V _{REF} - 90	mV	1, 2, 3				
Reference voltage for CMD/ADDR inputs	V (EFFCA(LC)	$0.49 \times V_{DD}$	$0.49 \times V_{DD}$	V	4				

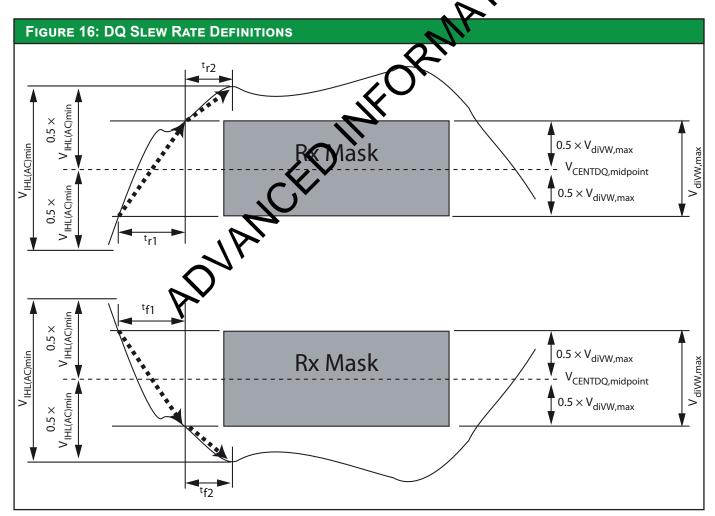
Notes:


- ESET_n. $V_{REF} = V_{REFCA(DC)}$. 1. For input except
- must meet $V_{IL}/V_{IH(AC)}$ to meet tIS timings and $V_{IL}/V_{IH(AC)}$ to meet ^tIH timings.
- eak noise on V_{REF} may not allow V_{REF} to deviate from $V_{REFCA(DC)}$ by more than (for reference: approximately ± 12 mV).

'Overshoot and Undershoot Specifications."

TABLE 16: SINGLE-ENDED INPUT SLEW RATES									
Parameter Symbol Min Max Unit Note									
Single-ended input slew rate – CA	SR _{CA}	1.0	7.0	V/ns	1, 2, 3, 4				

- Notes: 1. For input except RESET_n.
 - 2. $V_{REF} = V_{REFCA(DC)}$.
 - 3. ${}^{t}IS/{}^{t}IH$ timings assume SRCA = 1V/ns.
 - 4. Measured between $V_{IH(AC)}$ and $V_{IL(AC)}$ for falling edges and between $V_{IL(AC)}$ and $V_{IH(AC)}$ for rising edges



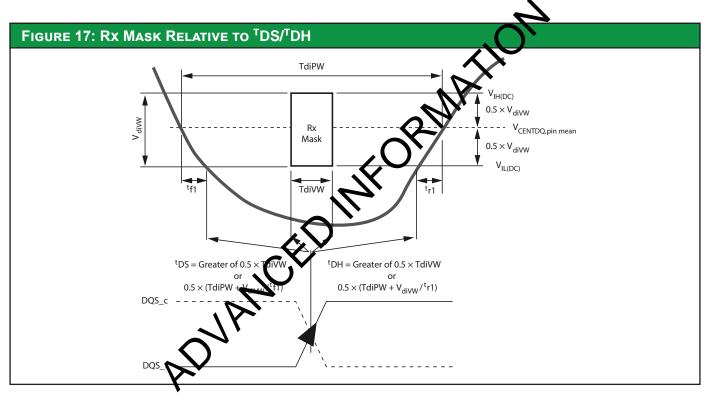
Data Receiver Input Requirements

The following parameters apply to the data receiver Rx MASK operation detailed in the Write Timing section, Data Strobe-to-Data Relationship.

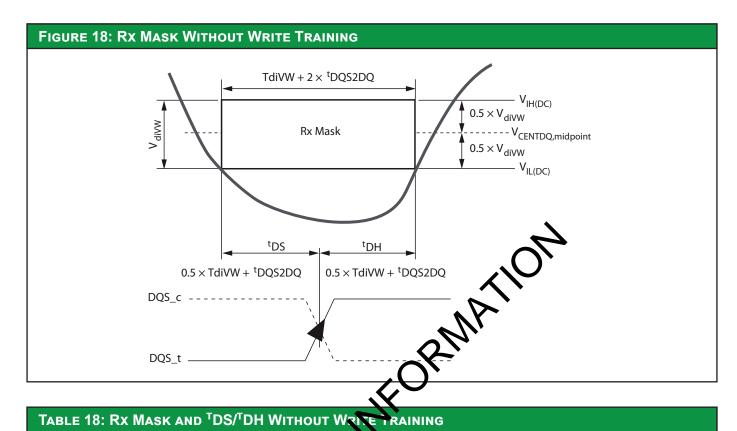
The rising edge slew rates are defined by srr1 and srr2. The slew rate measurement oints for a rising edge are shown in the figure below. A LOW-to-HIGH transition time, tr1, is measured from $0.5 \times V_{diVW,max}$ below $V_{CENTDQ,midpoint}$ to the last transition through $0.5 \times V_{diVW,max}$ above $V_{CENTDQ,midpoint}$; tr2 is measured from the last transition through $0.5 \times V_{diVW,max}$ above $V_{CENTDQ,midpoint}$ to the first transition through the $0.5 \times V_{IHL(AC)min}$ above $V_{CENTDQ,midpoint}$.

The falling edge slew rates are defined by srf1 and srf2. The slew rate measurement points for a rising edge are shown in the figure below. A HIGH-to-LOW transition time, tf1, is measured from $0.5 \times V_{diVW,max}$ above $V_{CENTDQ,midpoint}$ to the last transition through $0.5 \times V_{diVW,max}$ below $V_{CENTDQ,midpoint}$; tf2 is measured from the last transition through $0.5 \times V_{diVW,max}$ below $V_{CENTDQ,midpoint}$ to the first transition through $0.5 \times V_{IHL(AC)min}$ below $V_{CENTDQ,midpoint}$.

- Notes: 1. Rising edge slew rate equation $srr1 = V_{diVW,max}/({}^{t}r1)$.
 - 2. Rising edge slew rate equation $srr2 = (V_{IHL(AC)min} V_{diVW,max})/(2 \times {}^tr2)$.
 - 3. Falling edge slew rate equation $srf1 = V_{diVW,max}/({}^tf1)$.
 - 4. Falling edge slew rate equation $srf2 = (V_{IHL(AC)min} V_{diVW,max})/(2 \times {}^tf2)$.


Note 1 applies to	the entire ta			1						1			
Parameter		DDR4-1600, 1866, 2133		DDR4	-2400	DDR4	DDR4-2666		DDR4-2933		DDR4-3200		Not
	Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Unit	es
V _{IN} Rx mask input peak-to-peak	V _{diVW}	-	136	-	130	-	120	_	115	-	110	mV	2, 3
DQ Rx input tim- ing window	TdiVW	-	0.2	_	0.2	-	0.22	_	0.23	-	0.23	UI	2, 3
DQ AC input swing peak-to- peak	V _{IHL(AC)}	186	-	160	-	150	-	145	Ś	140	-	mV	4, 5
DQ input pulse width	TdiPW	0.58	-	0.58	-	0.58	-	08	_	0.58	-	UI	6
DQS-to-DQ Rx mask offset	^t DQS2D Q	-0.17	0.17	-0.17	0.17	-0.19	0.19	-0.22	0.22	-0.22	0.22	UI	7
DQ-to-DQ Rx mask offset	^t DQ2DQ	-	0.1	-	0.1		€01.\$	_	0.115	-	0.125	UI	8
Input slew rate over V _{diVW} if ^t CK ≥ 0.925ns	srr1, srf1	1	9	1	9	K	9	1	9	1	9	V/ns	9
Input slew rate over V _{diVW} if 0.935ns > ^t CK ≥ 0.625ns	srr1, srf1	-	-	1.25) ° `	1.25	9	1.25	9	1.25	9	V/ns	9
Rising input slew rate over 1/2 V _{IHL(AC)}	srr2	srr2 srr1	M	0.2 × srr1	9	0.2 × srr1	9	0.2 × srr1	9	0.2 × srr1	9	V/ns	10
Falling input slew rate over 1/2 V _{IHL(AC)}	srf2	STO STO	9	0.2 × srf1	9	0.2 × srf1	9	0.2 × srf1	9	0.2 × srf1	9	V/ns	10

- Notes: 1. All Rx mask specifications must be satisfied for each UI. For example, if the minimum input pulse width is violated when satisfying TdiVW (MIN), $V_{\text{diVW},\text{max}}$, and minimum slew rate limits, then either TdiVW (MIN) or minimum slew rates would have to be increased to the point where the minimum input pulse width would no longer be violated.
 - 2. Data Rx mask voltage and timing total input valid window where $V_{\mbox{\scriptsize diVW}}$ is centered around $V_{\text{CENTDQ}, midpoint}$ after V_{REFDQ} training is completed. The data Rx mask is applied per bit and should include voltage and temperature drift terms. The input buffer design specification is to achieve at least a BER =1e- 16 when the Rx mask is not violated.
 - 3. Defined over the DQ internal V_{REF} range 1.
 - 4. Overshoot and undershoot specifications apply.
 - 5. DQ input pulse signal swing into the receiver must meet or exceed $V_{IHL(AC)min}$. $V_{IHL(AC)}$ min is to be achieved on an UI basis when a rising and falling edge occur in the same UI (a
 - 6. DQ minimum input pulse width defined at the V_{CENTDQ,midpoint}.


- 7. DQS-to-DQ Rx mask offset is skew between DQS and DQ within a nibble (x4) or word (x8, x16 [for x16, the upper and lower bytes are treated as separate x8s]) at the SDRAM balls over process, voltage, and temperature.
- 8. DQ-to-DQ Rx mask offset is skew between DQs within a nibble (x4) or word (x8, x16) at the SDRAM balls for a given component over process, voltage, and temperature.
- 9. Input slew rate over V_{diVW} mask centered at $V_{\text{CENTDQ,midpoint}}$. Slowest DQ slew rate to fastest DQ slew rate per transition edge must be within 1.7V/ns of each other.
- 10 Input slew rate between VdiVW mask edge and V_{IHL(AC)min} points.

The following figure shows the Rx mask relationship to the input timing specifications relative to system ^tDS and ^tDH. The classical definition for ^tDS/^tDH required a DQ rising and falling edges to not violate ^tDS and ^tDH relative to the DQS strobe at any time; however, with the Rx mask ^tDS and ^tDH can shift relative to the DQS strobe provided the input pulse width specification is satisfied and the Rx mask is not violated.

The following figure and table show an example of the worst case Rx mask required if the DQS and DQ pins do not have DRAM controller to DRAM write DQ training. The figure and table show that without DRAM write DQ training, the Rx mask would increase from 0.2UI to essentially 0.54UI. This would also be the minimum ^tDS and ^tDH required as well.

TABLE '	Table 18: Rx Mask and ^T DS/ ^T DH Without Write Training										
DDR4	V _{IHL(AC)} (mV)	TdiPW (UI)	V _{diVW} (mV)	TdiVW (UI)	^t DQS2DQ (UI)	^t DQ2DQ (UI)	Rx Mask (ps)	^t DS/ ^t DH_No Training (ps)			
1600	186	0.58	136	0.2	±0.17	0.1	125	338			
1866	186	0.58	4	0.2	±0.17	0.1	107.1	289			
2133	186	0.58	129	0.2	±0.17	0.1	3.84	253			
2400	160	0.58	130	0.2	±0.17	0.1	83.3	225			
2666	150	0.58	120	0.22	±0.19	0.105	82.5	225			
2933	145	0.58	115	0.23	±0.22	0.115	78.4	228			
3200	140	Ø.58	110	0.23	±0.22	0.125	71.8	209			

Connectivity Test (CT) Mode Input Levels

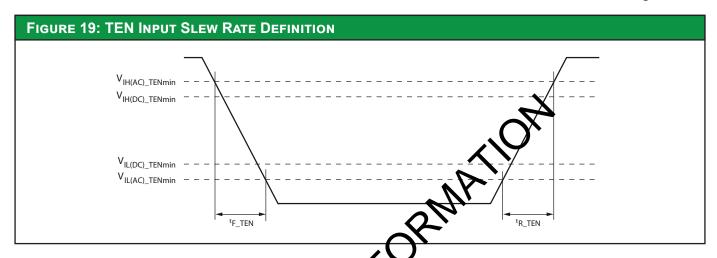
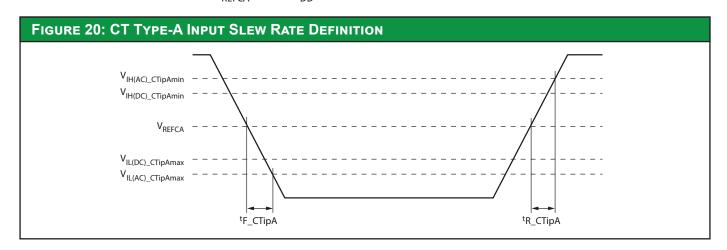

TABLE 19: TEN INPUT LEVELS (CMOS)									
Parameter	Symbol	Min	Max	Unit	Note				
TEN AC input high voltage	V _{IH(AC)_TEN}	$0.8 \times V_{DD}$	V _{DD}	V	1				
TEN DC input high voltage	V _{IH(DC)_TEN}	$0.7 \times V_{DD}$	V _{DD}	V					
TEN DC input low voltage	V _{IL(DC)_TEN}	V _{SS}	$0.3 \times V_{DD}$	V					
TEN AC input low voltage	V _{IL(AC)_TEN}	V _{SS}	$0.2 \times V_{DD}$	V	2				
TEN falling time	^t F_TEN	-	1 0	ns					

TABLE 19: TEN INPUT LEVELS (CMOS) (CONTINUED)										
Parameter	arameter Symbol Min Max Unit Note									
TEN rising time	^t R_TEN	_	1 0	ns						


Notes: 1. Overshoot should not exceed the VIN values in the Absolute Maximum Ratings table.

2. Undershoot should not exceed the VIN values in the Absolute Maximum Ratings table.

TABLE 20: CT TYPE-A INPUT LEVELS									
Parameter	Symbol	Min	Max	Unit	Note				
CTipA AC input high voltage	V _{IH} AC)	V _{REF} + 200	V _{DD1} ¹	V	2, 3				
CTipA DC input high voltage	V _{II} V,DC	V _{REF} + 150	V _{DD}	V	2, 3				
CTipA DC input low voltage	C Moc)	V _{SS}	V _{REF} - 150	V	2, 3				
CTipA AC input low voltage	V _{IL(AC)}	V _{SS1} ¹	V _{REF} - 200	V	2, 3				
CTipA falling time	^t F_CTipA	-	5	ns	2				
CTipA rising time	^t R_CTipA	-	5	ns	2				

Notes: 1. Pefer to Overshoot and Undershoot Specifications.
2. T Type-A inputs: CS_n, BG[1:0], BA[1:0], A[9:0], A10/AP, A11, A12/BC_n, A13, WE_n/A14, CAS_n/A15, RAS_n/A16, CKE, ACT_n, ODT, CLK_t, CLK_C, PAR.
3. V_{REFCA} = 0.5 × V_{DD}.

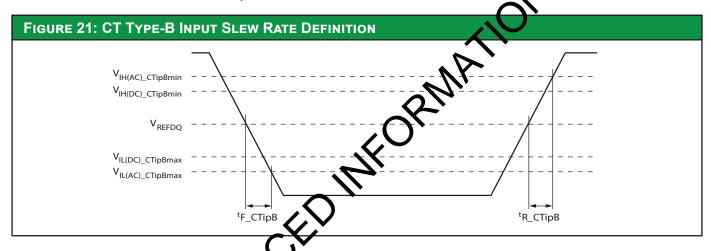


TABLE 21: CT TYPE-B INPUT LEVELS										
Parameter	Symbol	Min	Max	Unit	Note					
CTipB AC input high voltage	V _{IH(AC)}	V _{REF} + 300	V _{DD1} ¹	V	2, 3					
CTipB DC input high voltage	V _{IH(DC)}	V _{REF} + 200	V _{DD}	V	2, 3					
CTipB DC input low voltage	V _{IL(DC)}	V _{SS}	V _{REF} - 200	V	2, 3					
CTipB AC input low voltage	V _{IL(AC)}	V _{SS1} ¹	V _{REF} - 300	V	2, 3					
CTipB falling time	^t F_CTipB	_	V	ns	2					
CTipB rising time	^t R_CTipB	_	V	ns	2					

Notes: 1. Refer to Overshoot and Undershoot Specifications.

2. CT Type-B inputs: DML_n/DBIL_n, DMU_n/DBIU_n and DM_n/DBI_n.

3. V_{REFDQ} should be $0.5 \times V_{DD}$

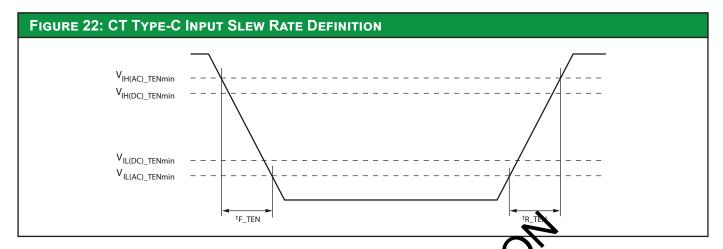


TABLE 22: CT TYPE-C INPUT LEVELS (CMOS)										
Parameter	Symbol	Min	Max	Unit	Note					
CTipC AC input high voltage	V _{IH(AC)_CTipC}	$0.8 \times V_{DD}$	V _{DD} ¹	V	2					
CTipC DC input high voltage	V _{IH(DC)_CTipC}	$0.7 \times V_{DD}$	V _{DD}	V	2					
CTipC DC input low voltage	V _{IL(DC)_CTipC}	V _{SS}	$0.3 \times V_{DD}$	V	2					
CTipC AC input low voltage	V _{IL(AC)_CTipC}	V _{SS} ¹	$0.2 \times V_{DD}$	V	2					
CTipC falling time	^t F_CTipC	_	1 0	ns	2					
CTipC rising time	^t R_CTipC	_	1 0	ns	2					

Notes: 1. Refer to Overshoot and Undershoot Specifications.

2. CT Type-C inputs: Alert_n.

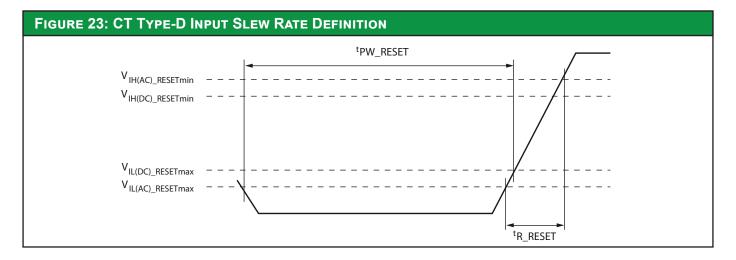


TABLE 23: CT TYPE-D INPUT LEV	/ELS				
Parameter	Symbol	Min	Max	Unit	Note
CTipD AC input high voltage	V _{IH(AC)_CTipD}	0.8 × V _{DD}	V _{DD}	V	4
CTipD DC input high voltage	V _{IH(DC)_CTipD}	$0.7 \times V_{DD}$	V_{DD}	V	2
CTipD DC input low voltage	V _{IL(DC)_CTipD}	, , , , , , , , , , , , , , , , , , ,	$0.3 \times V_{DD}$	V	1
CTipD AC input low voltage	$V_{IL(AC)_CTipD}$	Vs	$0.2 \times V_{DD}$	V	5
Rising time	tR_RESET	<u> </u>	1	μs	3
RESET pulse width - after power-up	t PW_RESET_S	2 , 1	-	μs	
RESET pulse width - during power-up	^t PW_RESET_L	200	-	μs	

Notes: 1. After RESET_n is registered LOW, the RESET_n level must be maintained below V_{IL(DC)_RE-SET} during ^tPW_TESET, otherwise, the DRAM may not be reset.


- 2. After RESEL n i) registered HIGH, the RESET_n level must be maintained above V_{IH(DC)} pesh, otherwise, operation will be uncertain until it is reset by asserting RESET_n signal LOW.
- 3. Slope reversal (ring-back) during this level transition from LOW to HIGH should be mitigated as much as possible.

vershoot should not exceed the V_{IN} values in the Absolute Maximum Ratings table. Undershoot should not exceed the V_{IN} values in the Absolute Maximum Ratings table. CT Type-D inputs: RESET_n; same requirements as in normal mode.

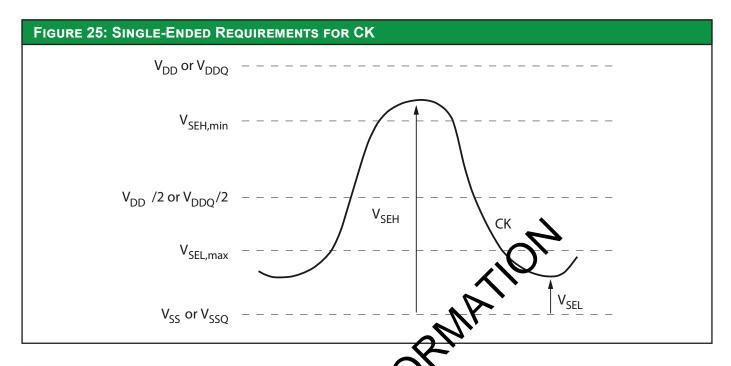
Differential Inputs

erential signal rising edge from $V_{IL,diff,max}$ to $V_{IH,diff(AC)min}$ must be monotonic slope. erential signal falling edge from $_{IH,diff,min}$ to $V_{IL,diff(AC)max}$ must be monotonic slope. Notes:

TABLE 24: DIFFERENTIAL INPUT SWING REQUIREMENTS FOR CK_T, CK_C									
			00 / 1866 / / 2400	1	56 / 2933 / 00				
Parameter	Symbol	Min	Max	Min	Max	Unit	Notes		
Differential input high	V _{IHdiff}	0.150	Note 3	0.120	Note 3	V	1		
Differential input low	V _{ILdiff}	Note 3	-0.150	Note 3	-0.120	V	1		
Differential input high (AC)	V _{IHdiff(AC)}	2 × (_{IH(AC)} - V _{REF})	Note 3	$2 \times (V_{IH(AC)} - V_{REF})$	Note 3	V	2		
Differential input low (AC)	V _{ILdiff(AC)}	Note 3	$2 \times (V_{IL(AC)} - V_{REF})$	Note 3	$2 \times (V_{IL(AC)} - V_{REF})$	V	2		

- Notes: 1. Used to define a differential signal slew-rate.
 - 2. For CK_t, CK_c use $V_{IH(AC)}$ and $V_{IL(AC)}$ of ADD/CMD and V_{REFCA} . These values are not defined; however, the differential signals (CK_t, CK_c) need to be within the respective limits, $V_{IH(DC)max}$ and $V_{IL(DC)min}$ for single-ended signals as well as
 - 3. the limitations for overshoot and undershoot.

TABLE 25: MINIMUM TIME	TABLE 25: MINIMUM TIME AC TIME ^T DVAC FOR CK							
	^t tDVAC (ps) at V _{II}	H,diff(AC) to V _{IL,diff(AC)}						
Slew Rate (V/ns)	200mV	TBDmV						
>4.0	120	TBD						
4.0	115	TBD						
3.0	110	TBD						
2.0	105	TBD						
1.9	100	TBD						
1.6	95							
1.4	90	ТВО						
1.2	85	TBD						
1.0	80	TBD						
<1.0	80	TBD						


Note: 1. Below V_{IL(AC)}.

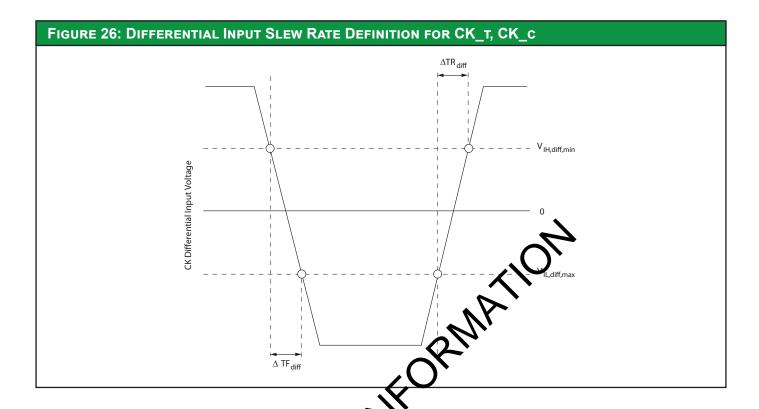
Single-Ended Requirements for CK Differential Signals

Each individual component of a differential sign a (NK_t, CK_c) has to comply with certain requirements for single-ended signals. CK_t and CK_c have to reach approximately $V_{SEH,min}/V_{SEL,max}$, which are approximately equal to the AC levels $V_{IH(AC)}$ and $V_{IL(AC)}$ for AKD/CMD signals in every half-cycle. The applicable AC levels for ADD/CMD might differ per speed-bin, and so on. For example, if a value other than 100mV is used for ADD/CMD $V_{IH(AC)}$ and $V_{IL(AC)}$ signals, then these AC levels also apply for the single-ended signals CK_t and CK_c.

While ADD/CMD signal requirements are with respect to V_{REFCA} , the single-ended components of differential signals have a requirement with respect to $V_{DD}/2$; this is nominally the same. The transition of single-ended signals through the AC levels is used to measure setup time. For single-ended components of differential signals the requirement to reach $V_{SEL,max}/V_{SEH,min}$ has no bearing on timing, but adds a restriction on the common mode characteristics of these signals.

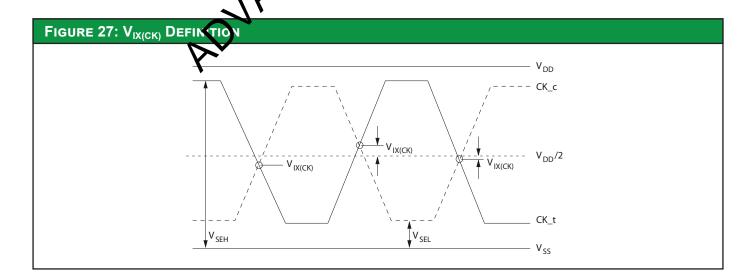
TABLE 26: SINGLE-ENDED REQUIREMENTS FOR CK										
			0 / 1866 / 2400	DDR4-2666 / 2933 / 3200						
Parameter Symbol		Min	Max	Min	Max	Unit	Notes			
Single-ended high level for CK_t, CK_c	V _{SEH}	V _{DD} /2 + 0.100	Note 3	V _{DD} /2 + 0.90	Note 3	V	1, 2			
Single-ended low level for CK_t, CK_c	30	Note 3	V _{DD} /2 - 0.100	Note 3	V _{DD} /2 - 0.90	V	1, 2			

t, CK_c use $V_{IH(AC)}$ and $V_{IL(AC)}$ of ADD/CMD and V_{REFCA} . CMD $V_{IH(AC)}$ and $V_{IL(AC)}$ based on V_{REFCA} . Notes:


values are not defined; however, the differential signal (CK_t, CK_c) need to be thin the respective limits, $V_{IH(DC)max}$ and $V_{IL(DC)min}$ for single-ended signals as well as the limitations for overshoot and undershoot.

Slew Rate Definitions for CK Differential Input Signals

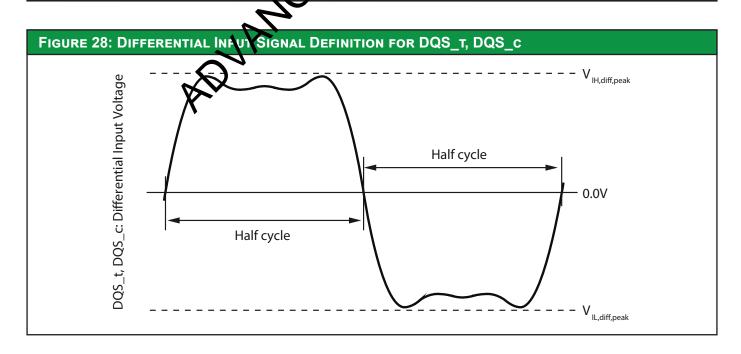
TABLE 27: CK DIFFERENTIAL INPUT SLEW RATE DEFINITION								
Description	From	То	Defined by					
Differential input slew rate for rising edge	$V_{IL,diff,max}$	V _{IH,diff,min}	$ V_{IH,diff,min} - V_{IL,diff,max} /\Delta TR_{diff}$					
Differential input slew rate for falling edge	V _{IH,diff,min}	$V_{IL,diff,max}$	$ V_{IH,diff,min}$ - $V_{IL,diff,max} /\Delta TR_{diff}$					


Note: 1. The differential signal CK_t, CK_c must be monotonic between these thresholds.

CK Differential Input Cross Point Voltage

To guarantee tight setup and hold times as well atput skew parameters with respect to clock and strobe, each cross point voltage of differential input signal t, CK_c must meet the requirements shown below. The differential input cross point voltage $V_{IX(CK)}$ is md from the actual cross point of true and complement signals to the midlevel between V_{DD} and VSS.

Electrical Characteristics - AC and DC Differential Input Measurement Levels


TABLE 28: CROSS POINT VOLTAGE FOR CK DIFFERENTIAL INPUT SIGNALS AT DDR4-1600 THROUGH DDR4-2400

			DDR4-1600, 1866, 2133		DDR4	DDR4-2400	
Parameter	Sym	Input Level	Min	Max	Min	Max	
Differential	V _{IX(CK)}	$V_{SEH} > V_{DD}/2 + 145 \text{mV}$	N/A	120mV	N/A	120mV	
input cross point voltage		$V_{DD}/2 + 100 \text{mV} \le V_{SEH} \le V_{DD}/2 + 145 \text{mV}$	N/A	(V _{SEH} - V _{DD} /2) - 25mV	N/A	(V _{SEH} - V _{DD} /2) - 25mV	
relative to V _{DD} /2 for CK_t, CK_c		$V_{DD}/2 - 145 \text{mV} \le V_{SEL} \le V_{DD}/2 - 100 \text{mV}$	–(V _{DD} /2-V _{SEL}) +25mV	N/A	–(V _{DD} /2-V _{SEL}) + 25mV	N/A	
cit_t, cit_t		$V_{SEL} \le V_{DD}/2 - 145 \text{mV}$	-120mV	N/A	-120mV	N/A	

TABLE 29: CROSS POINT VOLTAGE FOR CK DIFFERENTIAL INPUT SIGNALS AT DDR4-2666 THROUGH DDR4-3200

			DDR4	-2666	DDR4-29	33, 3200
Parameter	Sym	Input Level	Min	Mak	Min	Max
Differential	V _{IX(CK)}	$V_{SEH} > V_{DD}/2 + 135 \text{mV}$	N/A	N0mV	N/A	110mV
input cross point voltage		$V_{DD}/2 + 90mV \le V_{SEH} \le V_{DD}/2 + $ $135mV$	N/A	(V _{SEH} - V _{DD} /2) - 30mV	N/A	(V _{SEH} - V _{DD} /2) - 30mV
relative to V _{DD} /2 for CK_t, CK_c		$V_{DD}/2 - 135 \text{mV} \le V_{SEL} \le V_{DD}/2 - 90 \text{mV}$	-(V _{DD} /2-V _e L)+	N/A	$-(V_{DD}/2-V_{SEL}) + 30 \text{mV}$	N/A
C.C., C.C.		$V_{SEL} \le V_{DD}/2 - 135 \text{mV}$	1 . 0mV	N/A	-110mV	N/A

DQS Differential Input Signal Defin tion and Swing Requirements

TABLE 30: DDR4-1600 THROUGH DDR4-2400 DIFFERENTIAL INPUT SWING REQUIREMENTS FOR DQS_t, DQS_c

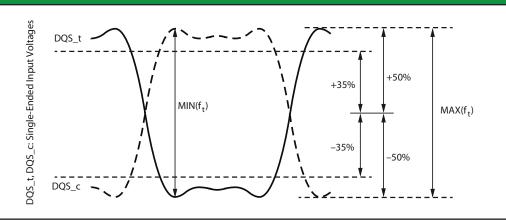
			DDR4-1600, 1866, 2133		-2400		
Parameter	Symbol	Min	Max	Min	Max	Unit	Notes
Peak differential input high voltage	V _{IH,diff,peak}	186	V_{DDQ}	160	V_{DDQ}	mV	1,2
Peak differential input low voltage	V _{IL,diff,peak}	V _{SSQ}	-186	V _{SSQ}	-160	mV	1,2

- Notes: 1. Minimum and maximum limits are relative to single-ended portion and can be exceeded within allowed overshoot and undershoot limits.
 - 2. Minimum value point is used to determine differential signal slew-rate.

TABLE 31: DDR4-2633 THROUGH DDR4-3200 DIFFERENTIAL INPUT SWIN DQS T, DQS C

		DDR4-2666 DDR4-2933		DDR4-3200					
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Unit	Notes
Peak differential input high volt-	V _{IH,diff,peak}	150V	V_{DDQ}	1 5 5V	V_{DDQ}	140	V_{DDQ}	mV	1,2
age				(2)					
Peak differential input low volt-	V _{IL,diff,peak}	V_{SSQ}	-150	V_{SSQ}	-145	V _{SSQ}	-140	mV	1,2
age				י					

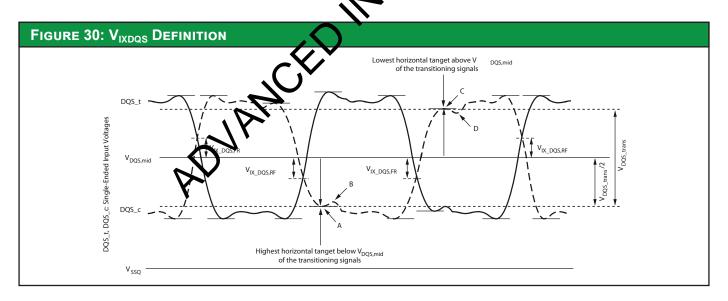
Notes:


- 1. Minimum and maximum re relative to single-ended portion and can be exceeded and undershoot limits. within allowed overshoot
- 2. Minimum value po is used to determine differential signal slew-rate.

The peak voltage of the DQS signals are calcu ing the following equations:

 $V_{IH,dif,Peak}$ voltage = MAX(ft) $V_{IL,dif,Peak}$ voltage = MIN(ft) $(ft) = DQS_t, DQS_c.$

The MAX(f(t)) or MIN(f(t)) used to determine the midpoint from which to reference the 35% window of the exempt non-monotonic signaling shall be the smallest peak voltage observed in all UIs.



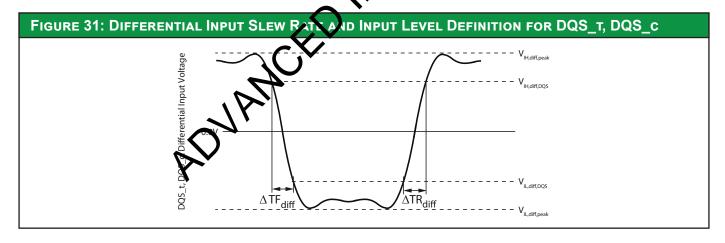
DQS Differential Input Cross Point Voltage

To achieve tight RxMask input requirements as well as output skew parameters with respect to strobe, the cross point voltage of differential input signals (DQS_t, DQS_c) must meet V_{IX DOS,ratio} in the table below. The differential input cross point voltage V_{IX DOS} (V_{IX DOS} FR and V_{IX DOS} RF) is measured from the actual cross point of DQS_t, DQS_c relative to the V_{DOS,mid} of the DQS_t and DQS_c signals.

V_{DOS,mid} is the midpoint of the minimum levels achieved by the transitioning DQS_t and DQS_c signals, and noted by V_{DOS trans}. V_{DOS trans} is the difference between the lowest horizontal tangent above V_{DOS,mid} of the transitioning DQS signals and the highest horizontal tangent below V_{DOS,mid} of the transitioning DQS signals. A non-monotonic transitioning signal's ledge is exempt or not used in determination of a horizontal tangent provided the said ledge occurs within ±35% of the midpoint of either V_{IH,DIFEPeak} voltage (DQS_t rising) or V_{IL,DIFEPeak} voltage (DQS_c rising), as shown in the figure below.

A secondary horizontal tangent resulting from a ring-back transition is also exempt tal tangent. That is, a falling transition's horizontal tangent is derived from its negative lope to zero slope transition (point A in the figure below), and a ring-back's horizontal tangent is derived in its positive slope to zero slope transition (point B in the figure below) and is not a valid horizontal targent, a rising transition's horizontal tangent is derived from its positive slope to zero slope transition (point C in the figure below), and a ring-back's horizontal tangent derived from its negative slope to zero slope transition (point D in the figure below) and is not a valid horizontal tangent.

Table 32: Cross Point Voltage For Differential Input Signals DQS									
		DDR4-1600, 18 2666, 29							
Parameter	Symbol	Min	Max	Unit	Notes				
DQS_t and DQS_c crossing relative to the midpoint of the DQS_t and DQS_c signal swings	V _{IX_DQS,ratio}	-	25	%	1, 2				


Table 32: Cross Point Voltage For Differential Input Signals DQS (Continued)								
DDR4-1600, 1866, 2133, 2400, 2666, 2933, 3200								
Parameter	Symbol	Min	Max	Unit	Notes			
V _{DQS,mid} to V _{cent(midpoint)} offset	V_{DQS,mid_to_Vcent}	-	Note 3	mV	2			

- Notes: 1. VIX_DQS,ratio is DQS VIX crossing (VIX_DQS,FR or VIX_DQS,RF) divided by VDQS_trans. VDQS trans is the difference between the lowest horizontal tangent above VDQS,midd of the transitioning DQS signals and the highest horizontal tangent below VDQS, mid of the transitioning DQS signals.
 - 2. VDQS,mid will be similar to the VREFDQ internal setting value (Vcent(midpoint) offset) obtained during VREF Training if the DQS and DQs drivers and paths are matched.
 - 3. The maximum limit shall not exceed the smaller of VIH, diff, DOS minimum limit or 50mV.

Slew Rate Definitions for DQS Differential Input Signals

TABLE 33: DQS DIFFERENTIAL INPUT	SLEW RATE D	EFINITION	
Description	From	10	Defined by
Differential input slew rate for rising edge	V _{IL,diff,DQS}	VII. diff,DQS	$ V_{IH,diff,DQS} - V_{IL,diff,DQS} /\Delta TR_{diff}$
Differential input slew rate for falling edge	V _{IH,diff,DQS}	IL,diff,DQS	$ V_{IHdiffDQS} - V_{IL,diff,DQS} /\Delta TR_{diff}$

Note: 1. The differential signal QS_c must be monotonic between these thresholds.

Table 34: DDR4-1600 through DDR4-2400 Differential Input Slew Rate and Input Levels FOR DQS_T, DQS_C DDR4-1600, 1866, 2133 **DDR4-2400 Symbol Parameter** Min Max Min Max Unit **Notes** Peak differential input high voltage 186 160 1 V_{IH.diff.peak} V_{DDO} V_{DDO} m۷ Differential input high voltage 136 130 m۷ 2, 3 $V_{IH,diff,DQS}$ Differential input low voltage -136 -130 m۷ 2, 3 $V_{IL,diff,DQS}$

TABLE 34: DDR4-1600 THROUGH DDR4-2400 DIFFERENTIAL INPUT SLEW RATE AND INPUT LEVELS FOR DQS_T, DQS_C (CONTINUED)

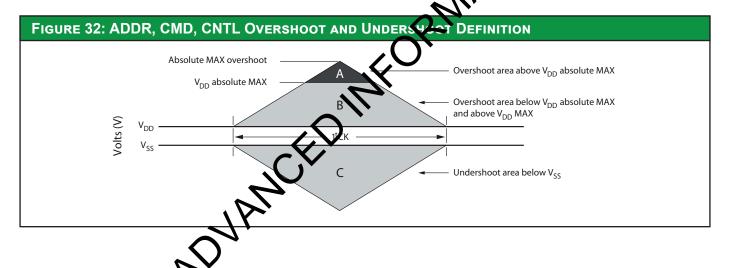
		DDR4-1600, 1866, 2133		DDR4-2400			
Parameter	Symbol	Min	Max	Min	Max	Unit	Notes
Peak differential input low voltage	$V_{IL,diff,peak}$	V _{SSQ}	-186	V _{SSQ}	-160	mV	1
DQS differential input slew rate	SRIdiff	3.0	18	3.0	18	V/ns	4, 5

- Notes: 1. Minimum and maximum limits are relative to single-ended portion and can be exceeded within allowed overshoot and undershoot limits.
 - 2. Differential signal rising edge from $V_{IL,diff,DQS}$ to $V_{IH,diff,DQS}$ must be monotonic slope.
 - 3. Differential signal falling edge from $V_{IH,diff,DQS}$ to $V_{IL,diff,DQS}$ must be monotonic slope.
 - 4. Differential input slew rate for rising edge from V_{IL,diff,DQS} to V_{IH,diff,DQS} is defined by | $V_{IL,diff,min} - V_{IH,diff,max} | \Delta TR_{diff}$.
 - 5. 5. Differential input slew rate for falling edge from os to V_{IL.diff.DOS} is defined by $V_{IL,diff,min}$ - $V_{IH,diff,max}|\Delta TR_{diff}$.

Table 35: DDR4-2666 through DDR4-3200 Differential EW RATE AND INPUT LEVELS FOR DQS T, DQS C

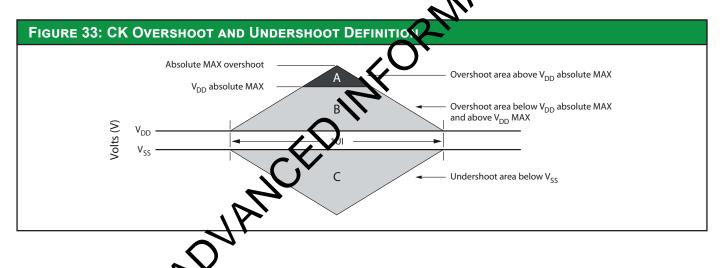
		DDR4	l-2666	DBR	1-2933	DDR4	l-3200		
Parameter	Symbol	Min	Max	Nie	Max	Min	Max	Unit	Notes
Peak differential input high voltage	V _{IH,diff,peak}	150	V _{DDO}	145	V _{DDQ}	140	V _{DDQ}	mV	1
Differential input high voltage	$V_{IH,diff,DQS}$	120	0,	115	_	110	_	mV	2, 3
Differential input low voltage	V _{IL,diff,DQS}	'C)	-120	-	-115	_	-110	mV	2, 3
Peak differential input low voltage	V _{IL,diff,peak}	7330	-150	V _{SSQ}	-145	V _{SSQ}	-140	mV	1
DQS differential input slew rate		3.0	18	3.0	18	3.0	18	V/ns	4, 5

Notes Minimum and maximum limits are relative to single-ended portion and can be exceeded within allowed overshoot and undershoot limits.

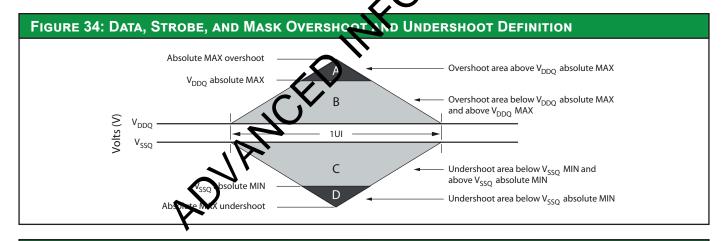

- 2. Differential signal rising edge from $V_{IL,diff,DQS}$ to $V_{IH,diff,DQS}$ must be monotonic slope.
- 3. Differential signal falling edge from $V_{IH,diff,DQS}$ to $V_{IL,diff,DQS}$ must be monotonic slope.
- 4. Differential input slew rate for rising edge from $V_{IL,diff,DQS}$ to $V_{IH,diff,DQS}$ is defined by | $V_{IL,diff,min} - V_{IH,diff,max} | \Delta TR_{diff}$.
- 5. Differential input slew rate for falling edge from $V_{IH,diff,DQS}$ to $V_{IL,diff,DQS}$ is defined by | $V_{IL.diff.min} - V_{IH.diff.max} \Delta TF_{diff}$

Electrical Characteristics - Overshoot and Undershoot Specifications

Address, Command, and Control Overshoot and Undershoot Specifications


Table 36: ADDR, CMD, CNTL Overshoot and Undershoot/Specifications									
Description	DDR4- 1600	DDR4- 1866	DDR4- 2133	DDR4- 2400	DDR4- 2666	DDR4- 3200	Unit		
Address and control pins (A[17:0], BG[1:0], BA[1:0]	, CS_n, RAS_	_n, CAS_n, W	/E_n, CKE, O	DT, C2-0)					
Area A: Maximum peak amplitude above V _{DD} absolute MAX	0.06	0.06	0.06	0.06	TBD	TBD	V		
Area B: Amplitude allowed between V _{DD} and V _{DD} absolute MAX	0.24	0.24	0.24	0.24	TBD	TBD	V		
Area C: Maximum peak amplitude allowed for undershoot below V _{SS}	0.30	0.30	0.30	0.30	TBD	TBD	V		
Area A maximum overshoot area per 1tCK	0.0083	0.0071	0.0062	20055	TBD	TBD	V/ns		
Area B maximum overshoot area per 1 ^t CK	0.2550	0.2185	0.1914	0.1699	TBD	TBD	V/ns		
Area C maximum undershoot area per 1 ^t CK	0.2644	0.2265	0.1984	0.1762	TBD	TBD	V/ns		

Clock Overshoot and Undershoot Specifications


Table 37: CK Overshoot and Undershoot/ Specifications									
Description	DDR4- 1600	DDR4- 1866	DDR4- 2133	DDR4- 2400	DDR4- 2666	DDR4- 3200	Unit		
CK_t, CK_c									
Area A: Maximum peak amplitude above V _{DD} absolute MAX	0.06	0.06	0.06	0.06	TBD	TBD	V		
Area B: Amplitude allowed between V _{DD} and V _{DD} absolute MAX	0.24	0.24	0.24	0.24	TBD	TBD	V		
Area C: Maximum peak amplitude allowed for undershoot below V _{SS}	0.30	0.30	0.30	0.30	TBD	TBD	V		
Area A maximum overshoot area per 1UI	0.0038	0.0032	0.0028	2025	TBD	TBD	V/ns		
Area B maximum overshoot area per 1UI	0.1125	0.0964	0.0844	0.0750	TBD	TBD	V/ns		
Area C maximum undershoot area per 1UI	0.1144	0.0980	0.0858	0.0762	TBD	TBD	V/ns		

ST9D4512M40DBG0

Data, Strobe, and Mask Overshoot and Undershoot Specifications

Table 38: Data, Strobe, and Mask Overshoot and Undershoot/ Specifications									
Description	DDR4- 1600	DDR4- 1866	DDR4- 2133	DDR4- 2400	DDR4- 2666	DDR4- 3200	Unit		
Data, Strobe, and Mask									
Area A: Maximum peak amplitude above V _{DDQ} absolute MAX	0.16	0.16	0.16	0.16	TBD	TBD	V		
Area B: Amplitude allowed between V_{DDQ} and V_{DDQ} absolute MAX	0.24	0.24	0.24	0.24	TBD	TBD	V		
Area C: Maximum peak amplitude allowed for undershoot below V _{SSQ}	0.30	0.30	0.30	0.30	TBD	TBD	V		
Area D: Maximum peak amplitude below V _{SSQ} absolute MIN	0.10	0.10	0.10	1/60	TBD	TBD	V		
Area A maximum overshoot area per 1UI	0.0150	0.0129	0.0113	0.0100	TBD	TBD	V/ns		
Area B maximum overshoot area per 1UI	0.1050	0.0900	0.0788	0.0700	TBD	TBD	V/ns		
Area C maximum undershoot area per 1UI	0.1050	0.0900	0.0₹88	0.0700	TBD	TBD	V/ns		
Area D maximum undershoot area per 1UI	0.0150	0.012	0.0113	0.0100	TBD	TBD	V/ns		

Electrical Characteristics – AC and DC Output Measurement Levels

Single-Ended Outputs

Table 39: Single-Ended Output Levels			
Parameter	Symbol	DDR4-1600 to DDR4-3200	Unit
DC output high measurement level (for IV curve linearity)	V _{OH(DC)}	$1.1 \times V_{DDQ}$	V
DC output mid measurement level (for IV curve linearity)	V _{OM(DC)}	$0.8 \times V_{DDQ}$	V
DC output low measurement level (for IV curve linearity)	V _{OL(DC)}	$0.5 \times V_{DDQ}$	V
AC output high measurement level (for output slew rate)	V _{OH(AC)}	$(0.7 + 0.15) \times V_{DDQ}$	V

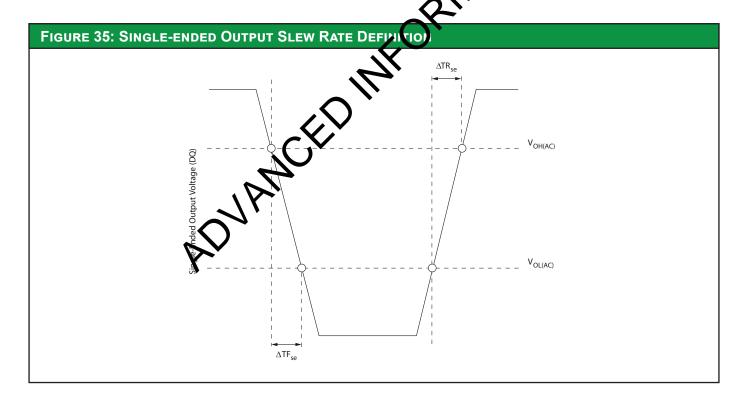

Electrical Characteristics - AC and DC Output Measurement Levels

TABLE 39: SINGLE-ENDED OUTPUT LEVELS (CONTINUED)								
Parameter	Symbol	DDR4-1600 to DDR4-3200	Unit					
AC output low measurement level (for output slew rate)	V _{OL(AC)}	$(0.7 - 0.15) \times V_{DDQ}$	V					

Note: 1. The swing of $\pm 0.15 \times VDDQ$ is based on approximately 50% of the static single-ended output peak-to-peak swing with a driver impedance of RZQ/7 and an effective test load of 50Ω to $V_{TT} = V_{DDO}$.

Using the same reference load used for timing measurements, output slew rate for falling and rising edges is defined and measured between $V_{OL(AC)}$ and $V_{OH(AC)}$ for singleended signals.

TABLE 40: SINGLE-ENDED OUTPUT SLEW F	4		
	Mea	sured)`
Description	From	То	Defined by
Single-ended output slew rate for rising edge	V _{OL(AC)}	V _{OHAC}	$[V_{OH(AC)} - V_{OL(AC)}]/\Delta TR_{se}$
Single-ended output slew rate for falling edge	V _{OH(AC)}	V5248)	$[V_{OH(AC)} - V_{OL(AC)}]/\Delta TF_{se}$

TABLE 41: SINGLE	ENDED OUTPO	UT SLEW RA	TE					
For $R_{ON} = R_{ZQ}/7$								
			33 / 1866 / / 2400	DDR4	-2666	DDR4-29	33 / 3200	
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Unit
Single-ended output slew rate	SRQ _{se}	4	9	4	9	4	9	V/ns

- Notes: 1. SR = slew rate; Q = query output; se = single-ended signals
 - 2. In two cases a maximum slew rate of 12V/ns applies for a single DQ signal within a byte lane:
 - Case 1 is defined for a single DQ signal within a byte lane that is switching into a certain direction (either from HIGH-to-LOW or LOW-t HIGH) while all remaining DQ signals in the same byte lane are static (they stay a leit) er HIGH or LOW).
 - Case 2 is defined for a single DQ signal within a byte-tane that is switching into a certain direction (either from HIGH-to-LOW or LOW-to-HIGH) while all remaining DQ signals in the same byte lane are switching to the opposite direction (from LOW-to-HIGH or HIGH-to-LOW, respectively). For the remaining DQ signal switching into the opposite direction, the standard ma limit of 9 V/ns applies.


Differential Outputs

TABLE 42: DIFFERENTIAL OUTPUT LEVELS			
Parameter	Symbol	DDR4-1600 to DDR4-3200	Unit
AC differential output high measurement level (for output lew rate)	$V_{OH,diff(AC)}$	$0.3 \times V_{DDQ}$	V
AC differential output low measurement level for output slew rate)	V _{OL,diff(AC)}	-0.3 × V _{DDQ}	V

swing of $\pm 0.3 \times V_{DDQ}$ is based on approximately 50% of the static single-ended outut peak-to-peak swing with a driver impedance of RZQ/7 and an effective test load of 0Ω to $V_{TT} = V_{DDO}$ at each differential output.

Using the same reference load used for timing measurements, output slew rate for falling and rising edges is defined and measured between $V_{OL,diff(AC)}$ and $V_{OH,diff(AC)}$ for differential signals.

Table 43: Differential Output Slew Rate Definition									
Measured									
Description	From	То	Defined by						
Differential output slew rate for rising edge	$V_{OL,diff(AC)}$	V _{OH,diff(AC)}	$[V_{OH,diff(AC)} - V_{OL,diff(AC)}]/\Delta TR_{diff}$						
Differential output slew rate for falling edge	V _{OH,diff(AC)}	$V_{OL,diff(AC)}$	$[V_{OH,diff(AC)} - V_{OL,diff(AC)}]/\Delta TF_{diff}$						

TABLE 44: DIFFERE	TABLE 44: DIFFERENTIAL OUTPUT SLEW RATE											
For $R_{ON} = R_{ZQ}/7$												
			33) 1866 / 33400	DDR	4-2666	DDR4-29	33 / 3200					
Parameter	Symbol	/lin	Max	Min	Max	Min	Max	Unit				
Differential output slew rate	SRQ _{diff}	4	18	8	18	8	18	V/ns				

Note: 1. SR = Sew rate; Q = query output; diff = differential signals.

Reference Load for AC Timing and Output Slew Rate

The effective reference load of 50Ω to $V_{TT} = V_{DDQ}$ and driver impedance of RZQ/7 for each output was used in defining the relevant AC timing parameters of the device as well as output slew rate measurements.

Ron nominal of DQ, DQS_t and DQS_c drivers uses 34 ohms to specify the relevant AC timing paraeter values of the device. The maximum DC High level of Output signal = 1.0 * V_{DDQ} , the minimum DC Low level of Output signal = { 34 /(34 + 50) } * V_{DDQ} = 0.4* V_{DDQ}

The nominal reference level of an Output signal can be approximated by the following: The center of maximum DC High and minimum DC Low = $\{(1+0.4)/2\}*V_{DDQ}=0.7*V_{DDQ}$. The actual reference level of Output signal might vary with driver Ron and reference load tolerances. Thus, the actual reference level or midpoint of an output signal is at the widest part of the output signal's eye.

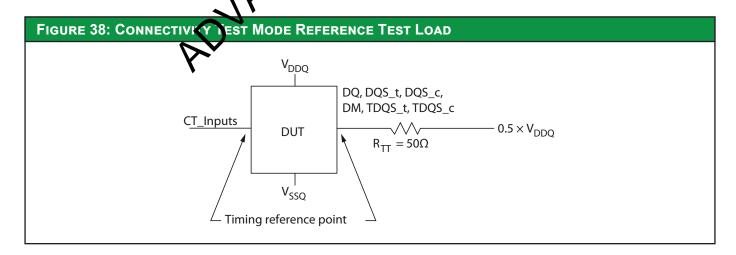


FIGURE 37: REFERENCE LOAD FOR AC TIMING AND OUTPUT SLEW RATE $V_{TT} = V_{DDO}$ V_{DDQ} DQ, DQS_t, DQS_c, DM, TDQS_t, TDQS_c CK_t, CK_c DUT $R_{TT} = 50\Omega$ $V_{\rm SSQ}$ Timing reference point

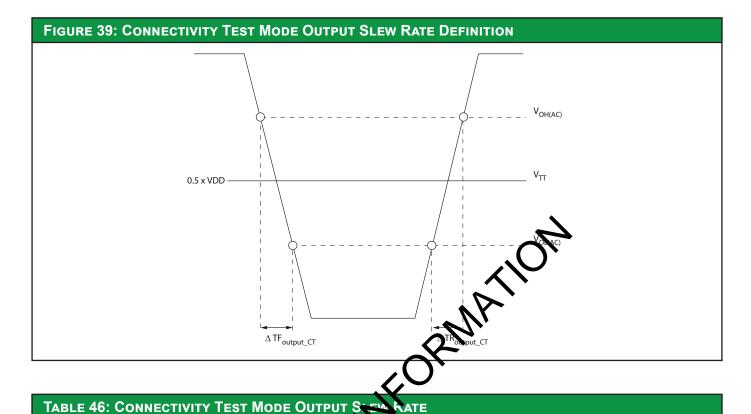

Connectivity Test Mode Output Levels

TABLE 45: CONNECTIVITY TEST MODE OUTPUT LEVELS							
Parameter	Symbol	DDR4-1600 to DDR4-3200	Unit				
DC output high measurement level (for IV curve linearity)	V _{OH(DC)}	$1.1 \times V_{DDQ}$	V				
DC output mid measurement level (for IV curve linearity)	V _{OM(DC)}	$0.8 \times V_{DDQ}$	V				
DC output low measurement level (for IV curve linearity)	V _{OL(DC)}	$0.5 \times V_{DDQ}$	V				
DC output below measurement level (for IV curve linearity)	V _{OB(DC)}	$0.2 \times V_{DDQ}$	V				
AC output high measurement level (for output slew rat	V _{OH(AC)}	$V_{TT} + (0.1 \times V_{DDQ})$	V				
AC output low measurement level (for output slew rate)	V _{OL(AC)}	V_{TT} - $(0.1 \times V_{DDQ})$	V				

pedance of $R_{ZO}/7$ and an effective test load of 50Ω to $V_{TT} = V_{DDO}$. Note: 1. Driv

TABLE 46: CONNECTIVITY TEST MODE OUTPUT SEEM RATE											
		DDR 1333 / 1866 / 2133 / 2400		DDR4-2666		DDR4-2933 / 3200					
Parameter	Symbol		Min	Max	Min	Max	Min	Max	Unit		
Output signal falling time	TF_output_CT	Y	_	10	_	10	_	10	ns/V		
Output signal rising time	TR_output_C1		-	10	_	10	-	10	ns/V		

ST9D4512M40DBG0

Output Driver Electrical Characteristics

The DDR4 driver supports two R_{ON} values. These R_{ON} values are referred to as strong mode (low R_{ON} : 34 Ω) and weak mode (high R_{ON} : 48 Ω). A functional representation of the output buffer is shown in the figure below.

Chip in drive mode Chip in drive mode To other circuitry like RCV, ... RONPU VOUT VOUT VOUT

The output driver impedance, R_{ON} , is determined by the value of the external reference resistor R_{ZQ} as follows: $R_{ON(34)} = R_{ZQ}/7$, or $R_{ON(48)} = R_{ZQ}/5$. This provides either a nominal 34.3 Ω ±10% or 48 Ω ±10% with nominal $R_{ZQ} = 240\Omega$.

The individual pull-up and pull-down resistors (R_{ONPu} and R_{ONPd}) are defined as follows:

R_{ONPu} when R_{ONPd} is off:

$$R_{ONPU} = \frac{V_{DDQ} - V_{OUT}}{\left| I_{OUT} \right|}$$

R_{ONPD} when R_{ONPU} is off:

$$R_{ONPD} = \frac{V_{OUT}}{\left|I_{OUT}\right|}$$

Electrical Characteristics - AC and DC Output Driver Characteristics

TABLE 47: S1	able 47: Strong Mode (34 Ω) Output Driver Electrical Characteristics										
Assumes R _{ZQ} =	ssumes R_{ZQ} = 240 Ω ; Entire operating temperature range after proper ZQ calibration										
R _{ON,nom}	Resistor	V _{OUT}	Min	Nim	Max	Unit	Notes				
		$V_{OL(DC)} = 0.5 \times V_{DDQ}$	0.8	1.0	1.1	R _{ZQ} /7	1, 2, 3				
	R _{ON34PD}	$V_{OM(DC)} = 0.8 \times V_{DDQ}$	0.9	1.0	1.1	R _{ZQ} /7	1, 2, 3				
34Ω		$V_{OH(DC)} = 1.1 \times V_{DDQ}$	0.9	1.0	1.25	R _{ZQ} /7	1, 2, 3				
3412		$V_{OL(DC)} = 0.5 \times V_{DDQ}$	0.9	1.0	1.25	R _{ZQ} /7	1, 2, 3				
	R _{ON34PU}	$V_{OM(DC)} = 0.8 \times V_{DDQ}$	0.9	1.0	1.1	R _{ZQ} /7	1, 2, 3				
		$V_{OH(DC)} = 1.1 \times V_{DDQ}$	0.8	1.0	1.1	R _{ZQ} /7	1, 2, 3				
within byte va	ween DQ to DQ ariation pull-up, M _{PUdd}	$V_{OM(DC)} = 0.8 \times V_{DDQ}$	-10	-	10	%	1, 2, 3, 4, 5				
Mismatch between DQ to DQ within byte variation pull-down, MMP _{PDdd}		$V_{OM(DC)} = 0.8 \times V_{DDQ}$	-	N'	10	%	1, 2, 3, 4, 6, 7				
	veen pull-up and vn, MM _{PUPD}	$V_{OM(DC)} = 0.8 \times V_{DDQ}$	-	Ni	10	%	1, 2, 3, 4, 6, 7				

Notes.

- 1. The tolerance limits are specified at excalibration with stable voltage and temperature. For the behavior of the tolerance limits if temperature or voltage changes after calibration, see following section of voltage and temperature sensitivity.
- 2. The tolerance limits are specified under the condition that $V_{DDQ} = V_{DD}$ and that $V_{SSQ} = V_{SS}$.
- 3. Micron recommends, alibrating pull-down and pull-up output driver impedances at $0.8 \times V_{DDQ}$. Other calibration schemes may be used to achieve the linearity specification shown above; or example, calibration at $0.5 \times V_{DDQ}$ and $1.1 V_{DDQ}$.
- 4. DQ-to-DQ hismatch within byte variation for a given component including DQS_t and DQS_c (change trized).
- 5. Measurement definition for mismatch between pull-up and pull-down, MM $_{PUPD}$: Measure Both R $_{ONPU}$ and R $_{ONPD}$ at 0.8 × V $_{DDQ}$ separately; RON,nom is the nominal R $_{ON}$ value.

$$MM_{PUPD} = \frac{R_{ONPU} - R_{ONPD}}{R_{ON,nom}} \times 100$$

6. RON variance range ratio to R_{ON} nominal value in a given component, including DQS_t and DQS_c:

$$MM_{PUDD} = \frac{R_{ONPU, max} - R_{ONPU, min}}{R_{ON, nom}} \times 100$$

$$MM_{PDDD} = \frac{R_{ONPU, max} - R_{ONPU, min}}{R_{ON, nom}} \times 100$$

- 7. The lower and upper bytes of a x16 are each treated on a per byte basis.
- 8. For IT and AT devices, the minimum values are derated by 9% when the device operates between –40°C and 0°C (TC).

TABLE 48: WI	able 48: Weak Mode (48Ω) Output Driver Electrical Characteristics									
Assumes R _{ZQ} =	Assumes R_{ZQ} = 240 Ω ; Entire operating temperature range after proper ZQ calibration									
R _{ON,nom}	Resistor	V _{OUT}	Min	Nim	Max	Unit	Notes			
48Ω	R _{ON34PD}	$V_{OL(DC)} = 0.5 \times V_{DDQ}$	0.8	1.0	1.1	R _{ZQ} /5	1, 2, 3			
		$V_{OM(DC)} = 0.8 \times V_{DDQ}$	0.9	1.0	1.1	R _{ZQ} /5	1, 2, 3			
		$V_{OH(DC)} = 1.1 \times V_{DDQ}$	0.9	1.0	1.25	R _{ZQ} /5	1, 2, 3			
	R _{ON34PU}	$V_{OL(DC)} = 0.5 \times V_{DDQ}$	0.9	1.0	1.25	R _{ZQ} /5	1, 2, 3			
		$V_{OM(DC)} = 0.8 \times V_{DDQ}$	0.9	1.0	1.1	R _{ZQ} /5	1, 2, 3			
		$V_{OH(DC)} = 1.1 \times V_{DDQ}$	0.8	1.0	1.1	R _{ZQ} /5	1, 2, 3			
within byte va	ween DQ to DQ riation pull-up, 1 _{PUdd}	$V_{OM(DC)} = 0.8 \times V_{DDQ}$	-10	-	10	%	1, 2, 3, 4, 5			
within byte vari	ween DQ to DQ ation pull-down, 1 _{PDdd}	$V_{OM(DC)} = 0.8 \times V_{DDQ}$	-	N'	10	%	1, 2, 3, 4, 6. 7			
	reen pull-up and vn, MM _{PUPD}	$V_{OM(DC)} = 0.8 \times V_{DDQ}$	-	Ni	10	%	1, 2, 3, 4, 6. 7			

- Notes: 1. The tolerance limits are specified after calibration with stable voltage and temperature. For the behavior of the tolerance limits if temperature or voltage changes after calibration, see following section of voltage and temperature sensitivity.
 - ied under the condition that $V_{DDQ} = V_{DD}$ and that $V_{SSQ} =$ V_{SS} .
 - librating pull-down and pull-up output driver impedances at 0.8 imesschemes may be used to achieve the linearity specification example, calibration at $0.5 \times V_{DDQ}$ and $1.1 V_{DDQ}$.
 - nismatch within byte variation for a given component including DQS_t and
 - nent definition for mismatch between pull-up and pull-down, MM_{PUPD}: both R_{ONPU} and R_{ONPD} at 0.8 imes V_{DDQ} separately; RON,nom is the nominal R_{ON}

$$MM_{PUPD} = \frac{R_{ONPU} - R_{ONPD}}{R_{ON,nom}} \times 100$$

6. RON variance range ratio to R_{ON} nominal value in a given component, including DQS_t and DQS_c:

$$MM_{PUDD} = \frac{R_{ONPU, max} - R_{ONPU, min}}{R_{ON, nom}} \times 100$$

$$MM_{PDDD} = \frac{R_{ONPU, max} - R_{ONPU, min}}{R_{ON, nom}} \times 100$$

- 7. The lower and upper bytes of a x16 are each treated on a per byte basis.
- 8. For IT and AT devices, the minimum values are derated by 9% when the device operates between -40°C and 0°C (TC).

Output Driver Temperature and Voltage Sensitivity

If temperature and/or voltage change after calibration, the tolerance limits widen according to the equations and tables below.

 $\Delta T = T - T(@calibration); \Delta V = V_{DDQ} - V_{DDQ}(@calibration); V_{DD} = V_{DDQ}$

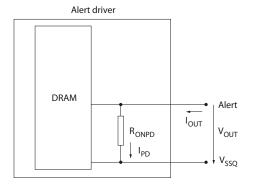

TABLE 49: OUTPUT DRIVER SENSITIVITY DEFINITIONS									
Symbol	Min	Max	Unit						
R _{ONPU} @ V _{OH(DC)}	$0.6 - dR_{ON}dTH \times \Delta T - dR_{ON}dVH \times \Delta V $	$1.1 _{dR_{ON}} dTH \times \Delta T + dR_{ON} dVH \times \Delta V $	R _{ZQ} /6						
R _{ON} @ V _{OM(DC)}	$0.9 - dR_{ON}dTM \times \Delta T - dR_{ON}dVM \times \Delta V $	$1.1 + dR_{ON}dTM \times \Delta T + dR_{ON}dVM \times \Delta V $	R _{ZQ} /6						
R _{ONPD} @ V _{OL(DC)}	$0.6 - dR_{ON}dTL \times \Delta T - dR_{ON}dVL \times \Delta V $	$1.1 + dR_{ON}dTL \times \Delta T + dR_{ON}dVL \times \Delta V $	R _{ZQ} /6						

Table 50: Output Driver Voltage and Temperature Sensitivity									
	Voltage and T	emperature hange							
Symbol	Min	Max	Unit						
dR _{ON} dTM	0	1.5	%/°C						
dR _{ON} dVM	0	0.15	%/mV						
dR _{ON} dTL	0 1	1.5	%/°C						
dR _{ON} dVL	0	0.15	%/mV						
dR _{ON} dTH	.63	1.5	%/°C						
dR _{ON} dVM		0.15	%/mV						

Alert Driver

A functional representation of the alert output buffer is shown in the figure below. Output driver impedance, R_{ON}, is defined as follows.

FIGURE 41: ALERT DRIVER

R_{ONPD} when R_{ONPU} is off:

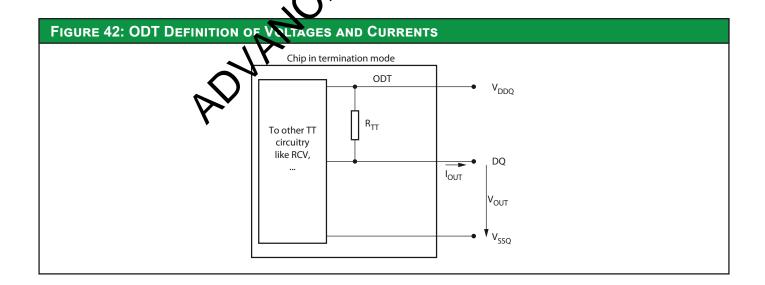
$$R_{ONPD} = \frac{V_{OUT}}{\left|I_{OUT}\right|}$$

Electrical Characteristics – On-Die Termination Characteristics

TABLE 51: ALERT DRIVER VOLTAGE										
R _{ON,nom}	Register	V _{OUT}	Min	Nom	Max	Unit				
N/A	R _{ONPD}	$V_{OL(DC)} = 0.1 \times V_{DDQ}$	0.3	N/A	1.2	R _{ZQ} /7				
		$V_{OM(DC)} = 0.8 \times V_{DDQ}$	0.4	N/A	1.12	R _{ZQ} /7				
		$V_{OH(DC)} = 1.1 \times V_{DDQ}$	0.4	N/A	1.4	R _{ZQ} /7				

Electrical Characteristics – On-Die Termination Characteristics

ODT Levels and I-V Characteristics


On-die termination (ODT) effective resistance settings are defined and can be selected by any or all of the following options:

- $\bullet \ \ MR1[10:8] \ (R_{TT(NOM)}): Disable, 240 \ ohms, 120 \ ohms, 80 \ ohms, 60 \ ohms, 40 \ ohms, 40 \ ohms, and 34 \ ohms.$
- MR2[11:9] (R_{TT(WR)}): Disable, 240 ohms, 120 ohms, and 80 ohms.
- MR5[8:6] (R_{TT(Park)}): Disable, 240 ohms, 120 ohms, 80 ohms, 60 ohms, 80 ohms, 40 ohms, and 34 ohms.

ODT is applied to the following inputs:

- x4: DQ, DM_n, DQS_t, and DQS_c inputs.
- x8: DQ, DM_n, DQS_t, DQS_c, TDQS_t, and TDQS_c input
- x16: DQ, LDM_n, UDM_n, LDQS_t, LDQS_c, UDQS_t, and UDQS_c inputs.

A functional representation of ODT is shown in the figure below.

TABLE 52: ODT DO	CHARACTERISTICS					
R _{TT}	V _{OUT}	Min	Nom	Max	Unit	Notes
240 ohm	$V_{OL(DC)} = 0.5 \times V_{DDQ}$	0.9	1	1.25	R _{ZQ}	1, 2, 3
	$V_{OM(DC)} = 0.8 \times V_{DDQ}$	0.9	1	1.1	R _{ZQ}	1, 2, 3
	$V_{OH(DC)} = 1.1 \times V_{DDQ}$	0.8	1	1.1	R _{ZQ}	1, 2, 3
120 ohm	$V_{OL(DC)} = 0.5 \times V_{DDQ}$	0.9	1	1.25	R _{ZQ} /2	1, 2, 3
	$V_{OM(DC)} = 0.8 \times V_{DDQ}$	0.9	1	1.1	R _{ZQ} /2	1, 2, 3
	$V_{OH(DC)} = 1.1 \times V_{DDQ}$	0.8	1	1.1	R _{ZQ} /2	1, 2, 3
80 ohm	$V_{OL(DC)} = 0.5 \times V_{DDQ}$	0.9	1	1.25	R _{ZQ} /3	1, 2, 3
	$V_{OM(DC)} = 0.8 \times V_{DDQ}$	0.9	1	1.1	R _{ZQ} /3	1, 2, 3
	$V_{OH(DC)} = 1.1 \times V_{DDQ}$	0.8	1	4	R _{ZQ} /3	1, 2, 3
60 ohm	$V_{OL(DC)} = 0.5 \times V_{DDQ}$	0.9	1	1.35	R _{ZQ} /4	1, 2, 3
	$V_{OM(DC)} = 0.8 \times V_{DDQ}$	0.9	1	1.1	R _{ZQ} /4	1, 2, 3
	$V_{OH(DC)} = 1.1 \times V_{DDQ}$	0.8	1	1.1	R _{ZQ} /4	1, 2, 3
48 ohm	$V_{OL(DC)} = 0.5 \times V_{DDQ}$	0.9	1	1.25	R _{ZQ} /5	1, 2, 3
	$V_{OM(DC)} = 0.8 \times V_{DDQ}$	0.9	VA.	1.1	R _{ZQ} /5	1, 2, 3
	$V_{OH(DC)} = 1.1 \times V_{DDQ}$	0.8	~	1.1	R _{ZQ} /5	1, 2, 3
40 ohm	$V_{OL(DC)} = 0.5 \times V_{DDQ}$	0.9	1	1.25	R _{ZQ} /6	1, 2, 3
	$V_{OM(DC)} = 0.8 \times V_{DDQ}$	0.9	1	1.1	R _{ZQ} /6	1, 2, 3
	$V_{OH(DC)} = 1.1 \times V_{DDQ}$	108	1	1.1	R _{ZQ} /6	1, 2, 3
34 ohm	$V_{OL(DC)} = 0.5 \times V_{DDQ}$	0.3	1	1.25	R _{ZQ} /7	1, 2, 3
	$V_{OM(DC)} = 0.8 \times V_{DDQ}$	0.9	1	1.1	R _{ZQ} /7	1, 2, 3
	$V_{OH(DC)} = 1.1 \times V_{DD}$	0.8	1	1.1	R _{ZQ} /7	1, 2, 3
DQ-to-DQ mismatch within byte	$V_{OM(DC)} = 0.8 \times V_{OD}$	0	-	10	%	1, 2, 4, 5, 6

Notes:

- . The tylerance limits are specified after calibration to 240 ohm $\pm 1\%$ resistor with stable valuage and temperature. For the behavior of the tolerance limits if temperature or oltage changes after calibration, see ODT Temperature and Voltage Sensitivity. Micron recommends calibrating pull-up ODT resistors at $0.8 \times V_{DDQ}$. Other calibration schemes may be used to achieve the linearity specification shown here.
- 3. The tolerance limits are specified under the condition that $V_{DDQ} = V_{DD}$ and $V_{SSQ} = V_{SS}$.
- 4. The DQ-to-DQ mismatch within byte variation for a given component including DQS_t and DQS_c.
- 5. RTT variance range ratio to R_{TT} nominal value in a given component, including DQS_t and DQS_c.

$$DQ-to-DQ mismatch = \frac{R_{TT(MAX)} - R_{TT(MIN)}}{R_{TT(NOM)}} \times 100$$

- 6. DQ-to-DQ mismatch for a x16 device is treated as two separate bytes.
- 7. For IT and AT devices, the minimum values are derated by 9% when the device operates between –40°C and 0°C (TC).

ODT Temperature and Voltage Sensitivity

If temperature and/or voltage change after calibration, the tolerance limits widen according to the following equations and tables.

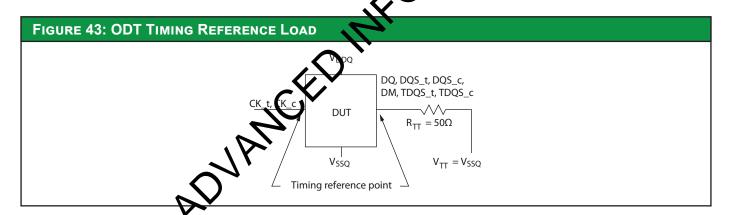

 $\Delta T = T - T(@ \text{ calibration}); \Delta V = V_{DDO} - V_{DDO}(@ \text{ calibration}); V_{DD} = V_{DDO}$

TABLE 53: ODT SENSITIVITY DEFINITIONS									
Parameter	Min	Max	Unit						
R _{TT} @	$0.9 - dR_{TT}dT \times \Delta T - dR_{TT}dV \times \Delta V $	$1.6 + dR_{TT}dTH \times \Delta T + dR_{TT}dVH \times \Delta V $	R _{ZQ} /n						

TABLE 54: ODT VOLTAGE AND TEMPERATURE SENSITIVITY				
Parameter	Min	Max	\supset	Unit
dR _{TT} dT	0	1.5		%/°C
dR _™ dV	0	0.15		%/mV

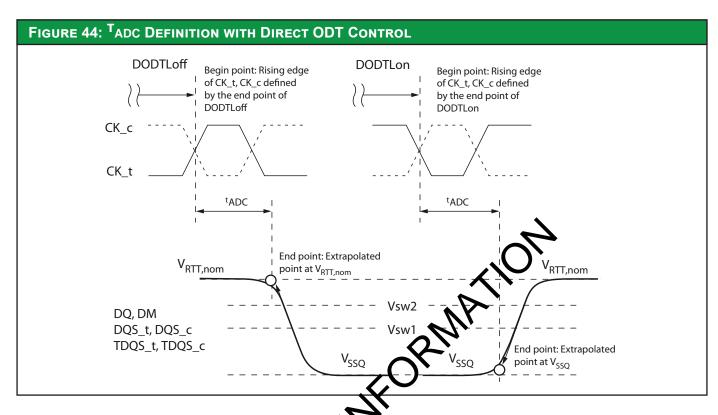
ODT Timing Definitions

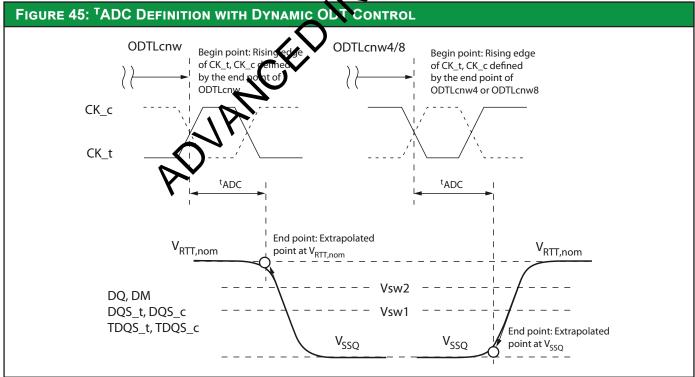
The reference load for ODT timings is different than the reference and used for timing measurements.

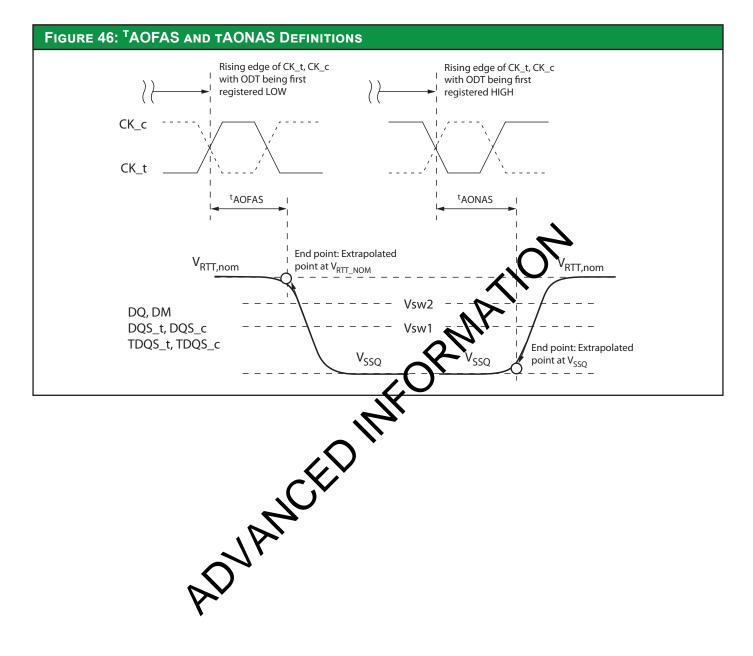
ODT Timing Definitions and Waveforms

Definitions for ^tADC, ^tAONAS, and ^tAOFAS are provided in the Table 122 (page 292) and shown in Figure 230 (page 293) and Figure 232 (page 294). Measurement reference settings are provided in the subsequent Table 123 (page 292).

The ${}^{t}\!ADC$ for the dynamic ODT case and read disable ODT cases are represented by ${}^{t}\!ADC$ of Direct ODT Control case.


TABLE 58	5: ODT TIMING DEFINITIONS		
Parameter	Begin Point Definition	End Point Definition	Figure
^t ADC	Rising edge of CK_t, CK_c defined by the end point of DODTLoff	Extrapolated point at V _{RTT,nom}	Figure 230 (page 293)
	Rising edge of CK_t, CK_c defined by the end point of DODTLon	Extrapolated point at V _{SSQ}	Figure 230 (page 293)
	Rising edge of CK_t, CK_c defined by the end point of ODTLcnw	Extrapolated point at V _{RTT,nom}	Figure 231 (page 293)
	Rising edge of CK_t, CK_c defined by the end point of ODTLcwn4 or ODTLcwn8	Extrapolated point at V _{SSQ}	Figure 231 (page 293)
^t AONAS	Rising edge of CK_t, CK_c with ODT being first registered HIGH	Extrapolated point at V _{SSQ}	Figure 232 (page 294)
^t AOFAS	Rising edge of CK_t, CK_c with ODT being first registered LOW	Extrapolated point at V _{RTT,nom}	Figure 232 (page 294)


TABLE 56: RE	TABLE 56: REFERENCE SETTINGS FOR ODT TIMING MEASURE SETTINGS														
Measure Parameter	R _{TT(Park)}	R _{TT(NOM)}	I (TT(W))	VSW1	VSW2	Note									
^t ADC	Disable	R _{ZQ} /7 (34Ω)	\\\	0.20V	0.40V	1, 2, 4									
	_	R _{ZQ} /7 (34Ω)	High-Z	0.20V	0.40V	1, 3, 5									
^t AONAS	Disable	R _{ZQ} /7 (34Ω)_	_	0.20V	0.40V	1, 2, 6									
^t AOFAS	Disable	R _{ZQ} /7 (343)	_	0.20V	0.40V	1, 2, 6									


- are is follows: MR1 has A10 = 1, A9 = 1, A8 = 1 for $R_{TT(NOM)}$ setting; MR5 has 0, A6 = 0 for $R_{TT(Park)}$ setting; and MR2 has A11 = 0, A10 = 1, A9 = 1 for Notes: 1. MR settings

 - are change is controlled by ODT pin. ate change is controlled by a WRITE command.
 - to Figure 230 (page 293).
 - to Figure 231 (page 293).
 - efer to Figure 232 (page 294).

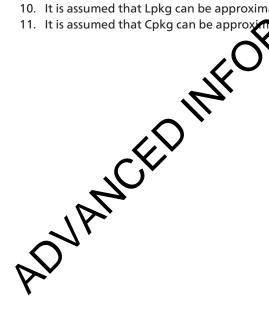


TABLE 5	7: DRAM Pac	KAGE ELECTR	ICAL SPE	CIFICATION	ONS					
			1600	, 1866	2133	, 2400	2666,	3200		
Parameter		Symbol	Min	Max	Min	Max	Min	Max	Unit	Notes
Input/	Zpkg	Z _{IO}	45	85	45	85	TBD	TBD	ohm	1, 2, 4
output	Package delay	Td _{IO}	14	45	14	45	TBD	TBD	ps	1, 3, 4
	Lpkg	L _{IO}	-	3.4	-	3.4	TBD	TBD	nH	
	Cpkg	C _{IO}	-	0.82	-	0.82	TBD	TBD	pF	
DQSL_t/	Zpkg	Z _{IO DQS}	45	85	45	85	TBD	TBD	ohm	1, 2
DQSL_c/	Package delay	Td _{IO DQS}	14	45	14	45	TBD	TBD	ps	1, 3
DQSU_t/ DQSU_c	Lpkg	L _{IO DQS}	-	3.4	_	3.4	Leg	TBD	nH	
DQ30_C	Cpkg	C _{IO DQS}	-	0.82	_	0.82	TAD	TBD	pF	
DQSL_t/	Delta Zpkg	DZ _{IO DQS}	-	10	_	10	TBD	TBD	ohm	1, 2, 3
DQSL_c, DQSU_t/ DQSU_c,	Delta delay	DTd _{IO DQS}	-	5	-	NA	TBD	TBD	ps	1, 3, 6
Input CTRL	Zpkg	Z _{I CTRL}	50	90	50	90	TBD	TBD	ohm	1, 2, 8
pins	Package delay	Td _{I CTRL}	14	42		42	TBD	TBD	ps	1, 3, 8
p.i.i3	Lpkg	L _{I CTRL}	_	3.4		3.4	TBD	TBD	nH	
	Cpkg	C _{I CTRL}	_	0.7	_	0.7	TBD	TBD	pF	
Input CMD	Zpkg	Z _{I ADD CMD}	50	190	50	90	TBD	TBD	ohm	1, 2, 7
ADD pins	Package delay	Td _{I ADD CMD}	14	52	14	52	TBD	TBD	ps	1, 3, 7
	Lpkg	L _{I ADD CMD}		3.9	_	3.9	TBD	TBD	nH	
	Cpkg	C _{I ADD CMD}	C-X	0.86	_	0.86	TBD	TBD	pF	
CK_t, CK_c	Zpkg	Z _{CK}	S	90	50	90	TBD	TBD	ohm	1, 2
	Package delay	Td _{CK}	14	42	14	42	TBD	TBD	ps	1, 3
	Delta Zpkg	DZ _D xk	_	10	-	10	TBD	TBD	ohm	1, 2, 5
	Delta delay	DTd _{DCK}	_	5	-	5	TBD	TBD	ps	1, 3, 5
Input CLK	Lpkg	ICLK	_	3.4	-	3.4	TBD	TBD	nH	
	Cpkg	C _{ICLK}	_	0.7	-	0.7	TBD	TBD	pF	
ZQ Zpkg	•	Z _{O ZQ}	40	100	40	100	TBD	TBD	ohm	1, 2
ZQ delay		Td _{O ZQ}	20	90	20	90	TBD	TBD	ps	1, 3
ALERT Zpkg		Z _{O ALERT}	40	100	40	100	TBD	TBD	ohm	1, 2
ALERT delay		Td _{O ALERT}	20	55	20	55	TBD	TBD	ps	1, 3

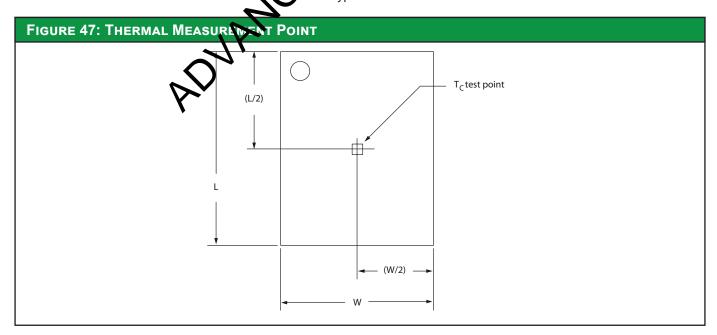
- 1. The package parasitic (L and C) are validated using package only samples. The capacitance is measured with V_{DD}, V_{DDO}, V_{SS}, and V_{SSO} shorted with all other signal pins floating. The inductance is measured with V_{DD} , V_{DDQ} , V_{SS} , and V_{SSQ} shorted and all other signal pins shorted at the die, not pin, side.
- 2. Package-only impedance (Zpkg) is calculated based on the Lpkg and Cpkg total for a given pin where: Zpkg (total per pin) = SQRT (Lpkg/Cpkg).
- 3. Package-only delay (Tpkg) is calculated based on Lpkg and Cpkg total for a given pin where: Tdpkg (total per pin) = SQRT (Lpkg × Cpkg).
- 4. Z_{IO} and Td_{IO} apply to DQ, DM, DQS_c, DQS_t, TDQS_t, and TDQS_c.
- 5. Absolute value of ZCK t, ZCK c for impedance (Z) or absolute value of TdCK t, TdCK c for delay (Td).
- 6. Absolute value of ZIO (DQS_t), ZIO (DQS_c) for impedance (Z) or absolute value of TdIO (DQS_t), TdIO (DQS_c) for delay (Td).
- 7. Z_{I ADD CMD} and Td_{I ADD CMD} apply to A[17:0], BA[1:0], BG RAS_n CAS_n, and WE_n.
- 8. Z_{I CTRI} and Td_{I CTRI} apply to ODT, CS_n, and CKE.
- 9. Package implementations will meet specification the Zpkg and package delay fall within the ranges shown, and the maximum Lpkg and Cpkg do not exceed the maximum values shown.
- 10. It is assumed that Lpkg can be approxima $okg = Z_O \times Td.$
- as Cpkg = Td/Z_0

TABLE 58: PAD INPUT/OUT	TPUT CAPACI	TANCE							
			-1600, , 2133		-2400, 666	DDR4	-3200		
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Unit	Notes
Input/output capacitance: DQ, DM, DQS_t, DQS_c, TDQS_t, TDQS_c	C _{IO}	0.55	1.4	0.55	1.15	0.55	1.15	pF	1, 2, 3
Input capacitance: CK_t and CK_c	C _{CK}	0.2	0.8	0.2	0.7	0.2	0.7	pF	1, 2, 3, 4
Input capacitance delta: CK_t and CK_c	C _{DCK}	0	0.05	0	0.05	0	0.05	pF	1, 2, 3, 5
Input/output capacitance delta: DQS_t and DQS_c	C _{DDQS}	0	0.05	0	0.05	4	0.05	pF	1, 3
Input capacitance: CTRL, ADD, CMD input-only pins	C ₁	0.2	0.8	0.2	0.7		0.7	pF	1, 3, 6
Input capacitance delta: All CTRL input-only pins	C _{DI_CTRL}	-0.1	0.1	-0.1	NA	-0.1	0.1	pF	1, 3, 7
Input capacitance delta: All ADD/CMD input-only pins	C _{DI_ADD_CMD}	-0.1	0.1	~	0.1	-0.1	0.1	pF	1, 3, 8, 9
Input/output capacitance delta: DQ, DM, DQS_t, DQS_c, TDQS_t, TDQS_c	C _{DIO}	-0.1	0.1	.1	0.1	-0.1	0.1	pF	1, 2, 10, 11
Input/output capacitance: ALERT pin	C _{ALERT}	0.5	1.3	0.5	1.5	0.5	1.5	pF	1, 3
Input/output capacitance: ZQ pin	C _{ZQ}	-00	2.3	0.5	2.3	0.5	2.3	pF	1, 3, 12
Input/output capacitance: TEN pin	C _{TEN}	0.2	2.3	0.2	2.3	0.2	2.3	pF	1, 3, 13

Notes: 1. Although the DM, TDQS_t, and TDQS_c pins have different functions, the loading natches DQ and DQS.

his parameter is not subject to a production test; it is verified by design and characterization. The capacitance is measured according to the JEP147 specification, "Procedure for Measuring Input Capacitance Using a Vector Network Analyzer (VNA)," with V_{DD} , V_{DDQ} , V_{SS} , and V_{SSQ} applied and all other pins floating (except the pin under test, CKE, RESET_n and ODT, as necessary). $V_{DD} = V_{DDQ} = 1.5V$, $V_{BIAS} = V_{DD}/2$ and on-die termination off.

- 3. This parameter applies to monolithic die, obtained by de-embedding the package L and C parasitics.
- 4. $C_{DIO} = C_{IO}(DQ, DM) 0.5 \times (C_{IO}(DQS_t) + C_{IO}(DQS_c))$.
- 5. Absolute value of C_{IO} (DQS_t), C_{IO} (DQS_c)
- 6. Absolute value of CCK_t, CCK_c
- 7. C_I applies to ODT, CS_n, CKE, A[15:0], BA[1:0], RAS_n, CAS_n, and WE_n.
- 8. CD_{I CTRL} applies to ODT, CS_n, and CKE.
- 9. $CD_{I CTRL} = C_{I}(CTRL) 0.5 \times (C_{I}(CLK_{t}) + C_{I}(CLK_{c})).$
- 10. C_{DI ADD CMD} applies to A[15:0], BA1:0], RAS_n, CAS_n and WE_n.
- 11. $C_{DI ADD CMD} = C_I(ADD_CMD) 0.5 \times (C_I(CLK_t) + C_I(CLK_c)).$
- 12. Maximum external load capacitance on ZQ pin: 5pF.
- 13. Only applicable if TEN pin does not have an internal pull-up.



Thermal Characteristics

Thermal Characteristics

Parameter/Condition		Value	Units	Symbol	Notes
Operating case temperature:		0 to 85	°C	T _C	1, 2, 3
Commercial		0 to 95	°C	T _C	1, 2, 3, 4
Operating case temperature:		-40 to 85	°C	T _C	1, 2, 3
Industrial		-40 to 95	℃ 🔪	T _C	1, 2, 3, 4
Operating case temperature:		-40 to 85	7	T _C	1, 2, 3
Automotive		-40 to 105	. €	T _C	1, 2, 3, 4
Lungtion to see (TOD) Die Dou A	78-ball "HX"	4.4	°C/W	016	_
Junction-to-case (TOP) Die Rev A	96-ball "HA"	3.6	- C/W	ΘJC	5
Lungtion to see (TOD) Die Dou D	78-ball "RH"	TRD	°C ///	016	_
Junction-to-case (TOP) Die Rev B	96-ball "GE"	BD	°C/W	ΘJC	5

- Notes: 1. MAX operating case temperatu measured in the center of the package.
 - 2. A thermal solution must be design ed to ensure the DRAM device does not exceed the maximum T_C during operation
 - 3. Device functionality is N quaranteed if the DRAM device exceeds the maximum T_C during operation.
 - 4. If T_C exceeds 85° PRAM must be refreshed externally at 2x refresh, which is a 3.9µs interval refresh rate
 - tance data is based off of a number of samples from multiple lots and 5. The therm d as a typical number.

Current Specifications - Measurement Conditions

IDD, IPP, and IDDQ Measurement Conditions

I_{DD}, I_{PP}, and I_{DDO} measurement conditions, such as test load and patterns, are defined in this section.

- I_{DD} currents (I_{DD0}, I_{DD1}, I_{DD2N}, I_{DD2NT}, I_{DD2P}, I_{DD2Q}, I_{DD3N}, I_{DD3P}, I_{DD4R}, I_{DD4W}, I_{DD5B}, I_{DD6N}, I_{DD6E}, I_{DD6R}, I_{DD7}, and I_{DD8}) are measured as time-averaged currents with all V_{DD} balls of the device under test grouped together. I_{PP} and I_{DDQ} currents are not included in I_{DD} currents.
- I_{PP} currents are I_{PPSB} for standby cases (I_{DD2N} , I_{DD2NT} , I_{DD2P} , I_{DD2Q} , I_{DD3N} , I_{DD3P} , I_{DD8}); I_{PP0} for active cases (I_{DD0} , I_{DD1} , I_{DD4R} , I_{DD4R}); I_{PP5B} and I_{PP6N} for self refresh cases (I_{DD6N} , I_{DD6E} , I_{DD6R}), and I_{PP7} . These have the same definitions as the I_{DD} currents referenced but are measured on the V_{PP} supply.
- I_{DDQ} currents (I_{DDQ2NT} and I_{DDQ4R}) are measured as time-averaged currents with V_{DDQ} balls of the device under test grouped together. I_{DD} current is not included in I_{DDQ} currents.

Note: I_{DDQ} values cannot be directly used to calculate the I/O power of the device. The can be used to support correlation of simulated I/O power to actual I/O power. In DRAM module application, I_{DDQ} cannot be measured separately because V_{DD} and V_{DDO} are using a merged-power layer in the module PCB

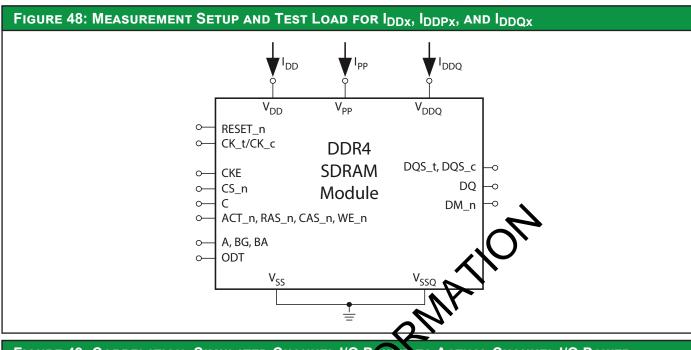
The following definitions apply for I_{DD}, I_{DDP} and I_{DDO} measurements.

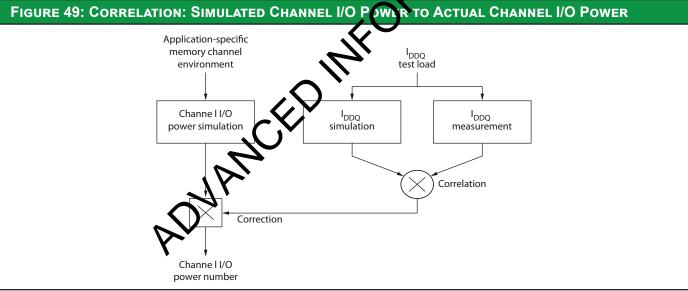
- "0" and "LOW" are defined as V_{IN} ≤V_{IL(AC)max}
- "1" and "HIGH" are defined as V_{IN} ≤V_{IH(AC)min}
- "Midlevel" is defined as inputs $V_{REF} = V_{DD}/2$
- Timings used for I_{DD}, I_{DDP} and I_{DDQ} measurement-loop patterns are provided in the Current Test Definition and Patterns section.
- ullet Basic I_{DD} , I_{PP} , and I_{DDQ} measurement conditions are described in the Current Test Definition and Patterns section
- Detailed I_{DD}, I_{PP}, and I_{DDQ} measurement-loop patterns are described in the Current Test Definition and Patterns section.
- Current measurements are done after properly initializing the device. This includes, but is not limited to, setting: $R_{ON} = R_{ZO}/7$ (34 ohm in MR1);

Qoff = 0B (output buffer enabled in Ma

 $R_{TT(NOM)} = R_{ZO}/6$ (40 ohm in MR1);

 $R_{TT(WR)} = R_{ZO}/2$ (120 ohm in MR2)


 $R_{TT(Park)} = disabled;$


TDQS feature disabled in MR1; CRC disabled in MR2; CA parity feature disabled in MR3; Gear-down mode disabled in MR3; Read/Write DBI disabled in MR5; DM disabled in MR5

- Define D = {CS n, RAS NCAS n, WE n}: = {HIGH, LOW, LOW, LOW}; apply BG/BA changes when directed.
- Define D_n = {CS_n, RAS_n, CAS_n, WE_n}: = {HIGH, HIGH, HIGH, HIGH}; apply invert of BG/BA changes when directed above.

Note: The measurement-loop patterns must be executed at least once before actual current measurements can be taken.

Note: 1. Supported by I_{DDQ} measurement.

IDD Definitions

TABLE	Table 60: Basic I _{DD} , I _{PP} , and I _{DDQ} Measurement Conditions										
Symbol	Description										
I _{DD0}	Operating One Bank Active-Precharge Current (AL = 0) CKE: HIGH; External clock: On; ^t CK, nRC, nRAS, CL: see the previous table; BL: 8; ¹ AL: 0; CS_n: HIGH between ACT and PRE; Command, address, bank group address, bank address inputs: partially toggling according to the next table; Data I/O: V _{DDQ} ; DM_n: stable at 0; Bank activity: cycling with one bank active at a time: 0, 0, 1, 1, 2, 2, (see the I _{DD0} Measurement-Loop Pattern table); Output buffer and R _{TT} : enabled in mode registers; ODT signal: stable at 0; Pattern details: see the I _{DD0} Measurement-Loop Pattern table										

	60: Basic I _{DD} , I _{PP} , and I _{DDQ} Measurement Conditions (Continued)
Symbol	Description
I _{PP0}	Operating One Bank Active-Precharge I _{PP} Current (AL = 0) Same conditions as I _{DD0} above
I _{DD1}	Operating One Bank Active-Read-Precharge Current (AL = 0) CKE: HIGH; External clock: on; ^t CK, nRC, nRAS, nRCD, CL: see the previous table; BL: 8; ^{1, 5} AL: 0; CS_n: HIGH between ACT, RD, and PRE; Command, address, bank group address, bank address inputs, Data I/O: partially toggling according to the I _{DD1} Measurement-Loop Pattern table; DM_n: stable at 0; Bank activity: cycling with one bank active at a time: 0, 0, 1, 1, 2, 2, (see the following table); Output buffer and R _{TT} : enabled in mode registers; ² ODT Signal: stable at 0; Pattern details: see the I _{DD1} Measurement-Loop Pattern table
I _{DD2N}	Precharge Standby Current (AL = 0) CKE: HIGH; External clock: On; t CK, CL: see the previous table; BL: 8; 1 AL: 0; CS_n: stable at 1; Sommand, address, bank group address, bank address Inputs: partially toggling according to the I_{DD2N} and I_{DD2N} Measurement-Loop Pattern table; Data I/O: V_{DDQ} ; DM_n: stable at 1; Bank activity: all banks closed; Output buffer and R_{TT} : enabled in mode registers; 2 ODT signal: stable at 0; Pattern details: see the I_{DD2N} and I_{DD3N} Measurement-Loop Pattern table
I _{DD2NT}	Precharge Standby ODT Current CKE: HIGH; External clock: on; ^t CK, CL: see the previous table; BL: 8; ¹ At: Q: TS_h: stable at 1; Command, address, bank gropup address, bank address inputs: partially toggling according to the I _{DD2NT} and I _{DDQ2NT} Measurement-Loop Pattern table; Data I/O: V _{SSQ} ; DM_n: stable at 1; Bank activity; at banks closed; Output buffer and R _{TT} : enabled in mode registers; ² ODT signal: toggling according to the I _{DD2NT} and I _{DDQ2NT} Measurement-Loop Pattern table; Pattern details: see the I _{DD2NT} and I _{DDQ2NT} Measurement-Loop Pattern table
I _{DDQ2NT}	Precharge Standby ODT I _{DDQ} Current Has the same definition as I _{DD2NT} above, with the exception of measuring I _{DDQ} current instead of I _{DD} current
I _{DD2P}	Precharge Power-Down Current CKE: LOW; External clock: on; ^t CK, CL: see the previous table; BL: 8; ¹ AL: 0; CS_n: stable at 1; Command, address, bank group address, bank address inputs: 5 table at 0; Data I/O: V _{DDQ} ; DM_n: stable at 1; Bank activity: all banks closed; Output buffer and R _{TK} Baabled in mode registers; ² ODT signal: stable at 0
I _{DD2Q}	Precharge Quiet Standby Curres CKE: HIGH; External clock: on; Q; CE: see the previous table; BL: 8; AL: 0; CS_n: stable at 1; Command, address, bank group address, bank address inputs: stable at 0; Data I/O: V _{DDQ} ; DM_n: stable at 1; Bank activity: all banks closed; Output buffer and R _{TT} : Enabled in mode registers; ODT signal: stable at 0
I _{DD3N}	Active Standby Gurent: $AL = 0$) CKE: HIGH; External clock: on; t CK, CL: see the previous table; BL: 8; 1 AL: 0; CS_n: stable at 1; Command, address, bank group address, bank address inputs: partially toggling according to the I_{DD2N} and I_{DD3N} Measurement-Loop Pattern table; Data I/O: V_{DDQ} ; DM_n: stable at 1; Bank activity: all banks open; Output buffer and R_{TT} : Enabled in mode registers; 2 ODT signal: stable at 0; Pattern details: see the I_{DD2N} and I_{DD3N} Measurement-Loop Pattern table
I _{PPSB}	Active Standby I _{PPSB} Current (AL = 0) Same conditions as I _{DD3N} above
I _{DD3P}	Active Power-Down Current (AL = 0) CKE: LOW; External clock: on; t CK, CL: see the previous table; BL: 8; 1 AL: 0; CS_n: stable at 1; Command, address, bank group address, bank address inputs: stable at 1; Data I/O: t Domain: stable at 1; Bank activity: all banks open; Output buffer and R_{TT} : Enabled in mode registers; 2 ODT signal: stable at 0

ST9D4512M40DBG0

Symbol	Description										
I _{DD4R}	Operating Burst Read Current (AL = 0) CKE: HIGH; External clock: on; t CK, CL: see the previous table; BL: 8; 15 AL: 0; CS_n: HIGH between RD; Command, address, bank group address, bank address inputs: partially toggling according to the I_{DD4R} and I_{DDQ4R} Measurement-Loop Pattern table; Data I/O: seamless read data burst with different data between one burst and the next one according to the I_{DD4R} and I_{DDQ4R} Measurement-Loop Pattern table; DM_n: stable at 1; Bank activity: all banks open, RD commands cycling through banks: 0, 0, 1, 1, 2, 2, (see the I_{DD4R} and I_{DDQ4R} Measurement-Loop Pattern table); Output buffer and I_{TT} : Enabled in mode registers; ODT signal: stable at 0; Pattern details: see the I_{DD4R} and I_{DDQ4R} Measurement-Loop Pattern table										
I _{DDQ4R}	Operating Burst Read I _{DDQ} Current Has the same definition as I _{DD4R} , with the exception of measuring I _{DDQ} current instead of I _D current										
I _{DD4W}	Operating Burst Write Current (AL = 0) CKE: HIGH; External clock: on; t CK, CL: see the previous table; BL: 8; 1 AL: 0; CS_n: HIGH between WR; Command, address, bank group address, bank address inputs: partially toggling according to the I_{DD4W} Measurement-Loop Pattern table; Data I/O: seamless write data burst with different data between one burst and the next one according to the I_{DD4W} Measurement-Loop Pattern table; DM: stable at 9; Bank activity: all banks open, WR commands cycling through banks: 0, 0, 1, 1, 2, 2, (see I_{DD4W} Measurement-Loop Pattern table); Output buffer and R_{TT} : enabled in mode registers (see note2); ODT and Stable at HIGH; Pattern details: see the I_{DD4W} Measurement-Loop Pattern table										
I _{DD5B}	Burst Refresh Current (1X REF) CKE: HIGH; External clock: on; ^t CK, CL, nRFC: see the previous table; BL: 8; ¹ AL: 0; CS_n: HIGH between REF; Command, address, bank group address, bank address include: partially toggling according to the I _{DD5B} Measurement-Loop Pattern table; Data I/O: V _{DDQ} ; DM_n: stable at NB: qk activity: REF command every nRFC (see the I _{DD5B} Measurement-Loop Pattern table); Oxaput buffer and R _{TT} : enabled in mode registers ² ; ODT signal: stable at 0; Pattern details: see the I _{DD5B} Measurement-Loop Pattern table										
I _{PP5B}	Burst Refresh Current (1X REF) Same conditions as I _{DD5B} above										
I _{DD6N}	Self Refresh Current: Normal To, Lature Range T _C : 0–85°C; Auto self refresh (ASS): disabled; Self refresh temperature range (SRT): normal; CKE: LOW; External clock: off; CK_t and CK_c: LOW; L: see the table above; BL: 8; AL: 0; CS_n, command, address, bank group address, bank address, ban										
I _{PP6N}	Self Refresh I _{PP} Clurent: Normal Temperature Range Same conditions as I _{DD6N} above										
I _{DD6E}	Self Refresh Current: Extended Temperature Range ⁴ T _C : 0–95°C; Auto self refresh (ASR): disabled ⁴ ; Self refresh temperature range (SRT): extended; CKE: LOW; External clock: off; CK_t and CK_c: LOW; CL: see the previous table; BL: 8; AL: 0; CS_n, command, address, group bank address, bank address, data I/O: V _{DDQ} ; DM_n: stable at 1; Bank activity: EXTENDED TEMPERATURE SELF REFRESH operation; Output buffer and R _{TT} : enabled in mode registers; ODT signal: midlevel										
DD6R	Self Refresh Current: Reduced Temperature Range T _C : 0–45°C; Auto self refresh (ASR): disabled; Self refresh temperature range (SRT): reduced; ⁴ CKE: LOW; External clock: off; CK_t and CK_c: LOW; CL: see the previous table; BL: 8; ¹ AL: 0; CS_n, command, address, bank group address, bank address, data I/O: V _{DDQ} ; DM_n: stable at 1; Bank activity: EXTENDED TEMPERATURE SELF REFRESH operation; Output buffer and R _{TT} : enabled in mode registers; ² ODT signal: midlevel										

TABLE	60: Basic I _{DD} , I _{PP} , and I _{DDQ} Measurement Conditions (Continued)
Symbol	Description
I _{DD7}	Operating Bank Interleave Read Current CKE: HIGH; External clock: on; t CK, n RC, n RAS, n RCD, n RRD, n FAW, CL: see the previous table; BL: 8; 15 AL: CL - 1; CS_n: HIGH between ACT and RDA; Command, address, group bank adress, bank address inputs: partially toggling according to the I_{DD7} Measurement-Loop Pattern table; Data I/O : read data bursts with different data between one burst and the next one according to the I_{DD7} Measurement-Loop Pattern table; DM: stable at 1; Bank activity: two times interleaved cycling through banks $(0, 1,7)$ with different addressing, see the I_{DD7} Measurement-Loop Pattern table; Output buffer and I_{RT} : enabled in mode registers; I_{RT} 0 ODT signal: stable at 0; Pattern details: see the I_{DD7} Measurement-Loop Pattern table
I _{PP7}	Operating Bank Interleave Read I _{PP} Current Same conditions as I _{DD7} above
I _{DD8}	Maximum Power Down Current Place DRAM in MPSM then CKE: HIGH; External clock: on; ^t CK, CL: see the previous table; B :: 8; ¹ AL: 0; CS_n: stable at 1; Command, address, bank group address, bank address inputs: stable at 1/O: V _{DDQ} ; DM_n: stable at 1; Bank activity: all banks closed; Output buffer and R _{TT} : Enabled in mode registers; ² ODT signal: stable at 0

- Notes: 1. Burst length: BL8 fixed by MRS: set M
 - 2. Output buffer enable: set MR1[12]0 $_{\rm out}$ t buffer enabled); set MR1[2:1] 00 (R_{ON} = $R_{ZQ}/7$); $R_{TT(NOM)}$ enable: set MR1(10.8) 011 (RZQ/6); $R_{TT(WR)}$ enable: set MR2[11:9] 001 ($R_{ZQ}/2$), and $R_{TT(Park)}$ enable: set MR2[8:6] 000 (disabled). Auto self refresh (ASR): set Mr2[6] 0 to disable or MR2[6] 1 to enable feature.
 - 3. Auto self refresh (ASR): set 10
 - (SRT): set MR2[7] 0 for normal or MR2[7] 1 for extended 4. Self refresh temperature temperature range
 - 5. READ burst type: klibble sequential, set MR0[3] 0.

Current Specifications – Patterns and Test Conditions

Current Test Definitions and Patterns

Та	BLE	61: I	_{DD0} AND I _P	PO MEA	SUR	EME	ит-L	.OOP	Рат	TERI	N ¹								
CK_t, CK_c	CKE	Sub-Loop	Cycle Number	Command	CS_n	ACT_n	RAS_n/A16	CAS_n/A15	WE_n/A14	ООТ	BG[1:0] ²	BA[1:0]	A12/BC_n	A[17,13,11]]	A[10]/AP	A[9:7]	A[6:3]	A[2:0]	Data ³
		0	0	ACT	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
			1, 2	D, D	1	1	1	1	1	0	0	0	0	0	0	0	0	0	-
			3, 4	D_n, D_n	1	1	1	1	1	0	3	3	0	0	0	7	F	0	-
			•••	Repeat pattern 14 until nRAS - 1; truncase if necessary															
			nRAS	PRE															
			•••		Repeat pattern 14 until nRCC 1; funcate if necessary														
	ے	1	$1 \times nRC$		Repeat sub-loop 0, use $BG[13] = 1$, use $BA[1:0] = 1$ instead														
		2	$2 \times nRC$		Repeat sub-loop 0, use $BC(1.0) = 0$, use $BA[1:0] = 2$ instead														
		3	$3 \times nRC$		Repeat sub-loop 0. (se B) $[1:0] = 1$, use BA[1:0] = 3 instead														
Toggling	Static High	4	$4 \times nRC$		Repeat sub-look O use BG[1:0] = 0, use BA[1:0] = 1 instead Repeat sub-look O use BG[1:0] = 1, use BA[1:0] = 2 instead														
Toge	tatic	5	$5 \times nRC$						_	_									
'	S	6	6 × <i>n</i> RC						→	•				use B					
		7	$7 \times nRC$											use B					
		8	8 × <i>n</i> RC					-						use B					
		9	9 × <i>n</i> RC			•	R	peat	sub-l	oop 0	, use l	3G[1:0)] = 3,	use B	A[1:0]	= 1 in	stead	4	
		10	10 × <i>n</i> RC			7	S R	epeat	sub-l	oop 0	, use l	3G[1:0)] = 2,	use B	A[1:0]	= 2 in	stead	4	
		11	11 × <i>n</i> RC		<u> </u>	<u>\`</u>	R	epeat	sub-l	oop 0	, use l	3G[1:0)] = 3,	use B	A[1:0]	= 3 in	stead	4	
	,	12	12 × <i>n</i> RC		L	1								use B					
		13	13 × <i>n</i> RC				R	epeat	sub-l	oop 0	, use l	3G[1:0)] = 3,	use B	A[1:0]	= 2 in	stead	4	
		14	14 × <i>n</i> RC	\rangle '	7		R	epeat	sub-l	oop 0	, use l	3G[1:0)] = 2,	use B	A[1:0]	= 3 in	stead	4	
		15	15	,			R	epeat	sub-l	oop 0	, use l	3G[1:0)] = 3,	use B	A[1:0]	= 0 in	stead	4	

- Notes: 1. DQS_t, DQS_c are V_{DDQ} .
 - 2. BG1 is a "Don't Care" for x16 devices.
 - 3. DQ signals are V_{DDQ} .
 - 4. For x4 and x8 only.

TA	BLE	62:	I _{DD1} MEASUI	REMENT-L	.00	P PA	TTEF	RN ¹											
CK_c, CK_t,	CKE	Sub-Loop	Cycle Number	Command	CS_n	ACT_n	RAS_n/A16	CAS_n/A15	WE_n/A14	ООТ	BG[1:0] ²	BA[1:0]	A12/BC_n	A[17,13,11]]	A[10]/AP	A[9:7]	A[6:3]	A[2:0]	Data ³
		0	0	ACT	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
			1, 2	D, D	1	0	0	0	0	0	0	0	0	0	0	0	0	0	-
			3, 4	D_n, D_n	1	1	1	1	1	0	3	3	0	0	0	7	F	0	-
			•••				Repe	at pat	tern ´	14 u	ntil <i>n</i>	RCD -	AL - 1	l; trur	ncate	if nec	essar	у	
			nRCD - AL	RD	0	1	1	0	1	0	0	0	0	0	0	0	0	0	D0 = 00, D1 =
			•••		R	epea	t patt	ern 1.	4 un	til <i>n</i> R	AS - 1	; trun	cate i	fnece	essan	7	•		FF, D2 = FF, D3 =
			nRAS	PRE	0	1	0	1	0	0	0	0	0	0	0	9	0	0	D2 = FF, D3 = 00,
			•••		ſ	Repea	t pati	tern 1	4 ur	ntil <i>n</i> F	RC - 1;	trund	ate if	rece	ssary				D4 = FF, D5 =
												•	, D						00, D5 = 00, D7 = FF
		1	$1 \times nRC + 0$	ACT	0	0	0	1	1	0	1		0	0	0	0	0	0	_
			1 × nRC + 1,	D, D	1	0	0	0	0	0	~	4	0	0	0	0	0	0	-
			1 × nRC + 3,	D_n, D_n	1	1	1	1	1	0	J	3	0	0	0	7	F	0	-
						Repe	at pa	ttern	vR€-	14	until	1 × n	RC + i	nRAS	- 1; tr	uncat	te if n	ecess	ary
ling	Static High		$1 \times nRC$ + $nRCD$ - AL	RD	0	1	1	O	1	0	1	1	0	0	0	0	0	0	D0 = FF, D1 = 00,
Toggling	atic					Repe	at at	ern 1	4 uı	ntil <i>n</i> f	RAS -	1; trui	ncate	if nec	essar	у			D2 = 00, D3 =
-	St		1 × nRC + nRAS	PRE	0	7	0	1	0	0	1	1	0	0	0	0	0	0	FF, D4 = 00, D5 = FF,
				1	R2pe	at pa	ttern	nRC +	- 14	until	2×n	RC - 1	; trun	cate i	fnece	essary	/		D5 = FF, D7 = 00
		2	$2 \times nRC$	ν_{\sim}	•		Rep	eat su	ıb-loc	p 0, ι	ıse B0	G[1:0]	= 0, t	ıse B <i>P</i>	\[1:0]	= 2 ir	nstead	t	
		3	$3 \times nRC$				Rep	eat su	ıb-loc	p 0, ι	ıse B0	3[1:0]	= 1, u	ıse B <i>P</i>	\[1:0]	= 3 ir	nstead	b	
		4	$4 \times nRC$				Rep	eat su	ıb-loc	p 0, ι	ıse B0	G[1:0]	= 0, t	ıse B <i>P</i>	\[1:0]	= 1 ir	nstead	d	
		5	$5 \times nRC$				Rep	eat su	ıb-loc	p 0, ι	ıse B0	3[1:0]	= 1, u	ise BA	\[1:0]	= 2 ir	nstead	d	
		6	$6 \times nRC$				Rep	eat su	ıb-loc	p 0, ι	ıse B0	G[1:0]	= 0, t	ıse B <i>P</i>	\[1:0]	= 3 ir	nstead	d	
		7	$7 \times nRC$				Rep	eat su	ıb-loc	p 0, ι	ıse B0	G[1:0]	= 1, u	ıse B <i>P</i>	\[1:0]	= 0 ir	nstead	d	
		8	$8 \times nRC$				Rep	eat su	ıb-loo	p 0, ι	ise BC	5[1:0]	= 2, u	ise BA	[1:0]	= 0 in	ısteac	l ⁴	
		9	$9 \times nRC$				Rep	eat su	ıb-loo	p 0, ι	ise BC	5[1:0]	= 3, u	ise BA	[1:0]	= 1 in	ısteac	l ⁴	
		10	10 × <i>n</i> RC				Rep	eat su	ıb-loo	ρ0, ι	ise BC	5[1:0]	= 2, u	ise BA	[1:0]	= 2 ir	ısteac	l ⁴	
		11	11 × <i>n</i> RC				Rep	eat su	ıb-loo	ρ0, ι	ise BC	5[1:0]	= 3, u	ise BA	[1:0]	= 3 ir	ısteac	l ⁴	
		12	12 × <i>n</i> RC				Rep	eat su	ıb-loo	ρ0, ι	ise BC	5[1:0]	= 2, u	ise BA	[1:0]	= 1 in	isteac	l ⁴	
		13	13 × <i>n</i> RC				Rep	eat su	ıb-loo	p 0, ι	ise BC	5[1:0]	= 3, u	ise BA	[1:0]	= 2 in	steac	l ⁴	
		14	14 × <i>n</i> RC				Rep	eat su	ıb-loo	p 0, ι	ise BC	5[1:0]	= 2, u	ise BA	[1:0]	= 3 in	isteac	l ⁴	
		15	$14 \times nRC$ Repeat sub-loop 0, use BG[1:0] = 2, use BA[1:0] = 3 instead4 $15 \times nRC$ Repeat sub-loop 0, use BG[1:0] = 3, use BA[1:0] = 0 instead4																

Notes: 1. DQS_t, DQS_c are V_{DDQ} when not toggling.
2. DQ signals are V_{DDQ} except when burst sequence drives each DQ signal by a READ command.

Та	BLE	63: I	_{DD2N} , I _{DD3N}	, AND I	PP3P	MEA	SUR	ЕМЕ	NT-L	ООР	Рат	TERN	N ¹						
CK_c, CK_t,	CKE	Sub-Loop	Cycle Number	Command	CS_n	ACT_n	RAS_n/A16	CAS_n/A15	WE_n/A14	ООТ	BG[1:0] ²	BA[1:0]	A12/BC_n	A[17,13,11]]	A[10]/AP	A[9:7]	A[6:3]	A[2:0]	Data ³
		0	0	D	1	0	0	0	0	0	0	0	0	0	8	18	0	0	-
			1	D	1	0	0	0	0	0	0	0	0	0	16	J 0	0	0	-
	2 D_n 1 1 1 1 0 3 3 0 0 7 F 0														0	-			
		3 D_n 1 1 1 1 0 3 3 0 0 7 F 0 -														-			
		1	4–7		Repeat sub-loop 0, use BG($3:0$)=1, use BA[$1:0$] = 1 instead Repeat sub-loop 0, us $BO[1:0] = 0$, use BA[$1:0$] = 2 instead														
		2	8–11		Repeat sub-loop 0, us $B([1:b] = 0$, use BA[1:0] = 2 instead														
		3	12–15		Repeat sub-loop (use $B \bullet [1:0] = 1$, use $BA[1:0] = 3$ instead														
		4	16–19		Repeat sub-loop 9, use BG[1:0] = 0, use BA[1:0] = 1 instead Repeat sub-loop 9, use BG[1:0] = 1, use BA[1:0] = 2 instead														
ing	Static High	5	20–23																
Toggling	tic !	6	24–27					Repe	eat su	o-wor	0, us	e BG[1:0] =	0, use	BA[1:	0] = 3	inste	ad	
Ĕ	Sta	7	28–31					Repe	eatsu	b-loop	0, us	e BG[1:0] =	1, use	BA[1:	0] = 0	inste	ad	
		8	32–35				_<	Repe	at sul	o-loop	0, us	e BG[1	1:0] =	2, use	BA[1:	0] = 0	instea	ad ⁴	
		9	36–39				$oldsymbol{C}$	Repe	at sul	o-loop	0, us	e BG[1	1:0] =	3, use	BA[1:	0] = 1	instea	ad ⁴	
		10	40–43			-	7	Repe	at sul	o-loop	0, us	e BG[1	1:0] =	2, use	BA[1:	0] = 2	instea	ad ⁴	
		11	44–47		, 1)	•	Repe	at sul	o-loop	0, us	e BG[1	1:0] =	3, use	BA[1:	0] = 3	instea	ad ⁴	
		12	48–51	•		7		Repe	at sul	o-loop	0, us	e BG[1	1:0] =	2, use	BA[1:	0] = 1	instea	ad ⁴	
		13	52–55		12			Repe	at sul	o-loop	0, us	e BG[1	1:0] =	3, use	BA[1:	0] = 2	instea	ad ⁴	
		14	56–59	0				Repe	at sul	o-loop	0, us	e BG[1	1:0] =	2, use	BA[1:	0] = 3	instea	ad ⁴	
		15	60–63	Y				Repe	at sul	o-loop	0, us	e BG[1	1:0] =	3, use	BA[1:	0] = 0	instea	ad^4	

Notes: 1. DQS_t, DQS_c are V_{DDQ}.

2. DQ signals are V_{DDQ}.

ST9D4512M40DBG0

Ta	BLE	64: I	DD2NT AND	I _{DDQ2N}	ME	ASUI	REMI	ENT-	Loo	P PA	TTER	RN ¹							
CK_c, CK_t,	CKE	Sub-Loop	Cycle	Command	CS_n	ACT_n	RAS_n/A16	CAS_n/A15	WE_n/A14	ООТ	BG[1:0] ²	BA[1:0]	A12/BC_n	A[17,13,11]]	A[10]/AP	A[9:7]	A[6:3]	A[2:0]	Data ³
		0	0	D	1	0	0	0	0	0	0	0	0	0	0	0	0	0	_
			1	D	1	0	0	0	0	0	0	0	0	0	0	0	0	0	_
		_	2	D_n	1	1	1	1	1	0	3	3	0	0	0	7	F	0	-
			3	D_n	1	1	1	1	1	0	3	3	0	0	0	7	F	0	_
		1	4–7													<u> </u>		inste	
		2	8–11													_		instea	
		3	12–15			R	epeat	sub-l	oop 0	with	ODT =	= 1, us	e BG[1:0] =	1, use	LA _L 1:	[0] = 3	instea	ad
	٦.	4	16–19											-				inste	
	ijH	5	20–23			R	epeat	sub-l	oop 0	with	ODT =	= 1, us	e BG[1:0] =	\ , use	BA[1:	:0] = 2	instea	ad
Toggling	Static High	6	24–27			R	epeat	sub-l	oop 0	with	ODT =	= 0, us	e G [0]=	0, use	BA[1:	:0] = 3	instea	ad
'	S	7	28-31			R	epeat	sub-l	oop 0	with	ODT =	= 1_uS	o 8 4 [1:0] =	1, use	BA[1:	[0] = 0	instea	ad
		8	32–35			R	epeat	sub-l	оор 0	with	ODT =	Q ds	e BG[[:0] =	2, use	BA[1:	0] = 0	instea	ad ⁴
		9	36–39			R	epeat	sub-l	оор 0	with	OIDT =	, use	e BG[´	1:0] =	3, use	BA[1:	0] = 1	instea	ad ⁴
		10	40–43			R	epeat	sub-l	oop 0	with	ØDT =	0, us	e BG[´	[:0] =	2, use	BA[1:	0] = 2	instea	ad ⁴
		11	44–47			R	epeat	sub-l	oop 0	with.	ODT =	= 1, us	e BG[´	[:0] = [3, use	BA[1:	0] = 3	instea	ad ⁴
		12	48-51			R	epeat	sub-l	00p 0	vith	ODT =	= 0, us	e BG[´	1:0] =	2, use	BA[1:	0] = 1	instea	ad ⁴
		13	52–55			R	epeat	sub	00 00	with	ODT =	= 1, us	e BG[´	1:0] =	3, use	BA[1:	0] = 2	instea	ad ⁴
		14	56–59			R	epeat	ub	oop 0	with	ODT =	= 0, us	e BG[´	[:0] =	2, use	BA[1:	0] = 3	instea	ad ⁴
		15	60-63			P	epeat	ub-l	оор 0	with	ODT =	= 1, us	e BG[´	1:0] =	3, use	BA[1:	0] = 0	instea	ad ⁴

Notes: 1. DQS to DQS_c are V_{SSQ}. 2. DQ signals are V_{SSQ}.

ST9D4512M40DBG0

TA	BLE	65 : l	_{DD4R} AND I _D	_{DQ4R} ME	EASU	REM	IENT	-Loc	P P	ATTE	RN ¹								
CK_c, CK_t,	CKE	Sub-Loop	Cycle Number	Command	CS_n	ACT_n	RAS_n/A16	CAS_n/A15	WE_n/A14	ООТ	BG[1:0] ²	BA[1:0]	A12/BC_n	A[17,13,11]]	A[10]/AP	A[9:7]	A[6:3]	A[2:0]	Data ³
		0	0	RD	0	1	1	0	1	0	0	0	0	0	0	0	0	0	D0 = 00, D1 =
			1	D	1	0	0	0	0	0	0	0	0	0	0	0	0	0	FF, D2 = FF, D3 =
			2, 3	D_n, D_n	1	1	1	1	1	0	3	3	0	0	0	7	F	0	D2 = FF, D3 = 00, D4 = FF, D5 = 00, D5 = 00, D7 = FF
		1	4	RD	0	1	1	0	1	0	1	1	0	9		7	F	0	D0 = FF, D1 = 00
			5	D	1	0	0	0	0	0	0	0	0		0	0	0	0	D2 = 00, D3 =
			6, 7	D_n, D_n	1	1	1	1	1	0	3	3 2	11	~	0	7	F	0	FF D4 = 00, D5 = FF D5 = FF, D7 = 00
l g	gh	2	8–11			•	F	Repea	t sub-	loop (, use	B G [1:	0] = 0	, use l	3A[1:0)] = 2	instea	nd	
Toggling	Static High	3	12–15				F	Repea	t sub-	loop	, ase	BG[1:	0] = 1	, use l	3A[1:0)] = 3	instea	nd	
P	Stat	4	16–19				F	Repea	t sub-	loop), use	BG[1:	0] = 0	, use l	3A[1:0)] = 1	instea	nd	
		5	20-23				F	Repea	t sub-	loop '	l, use	BG[1:	0] = 1	, use l	3A[1:0)] = 2	instea	nd	
		6	24–27				F	Ropea	sub-	loop (), use	BG[1:	0] = 0	, use l	3A[1:0)] = 3	instea	nd	
		7	28-31					epea	t sub-	loop '	l, use	BG[1:	0] = 1	, use l	3A[1:0	0] = 0	instea	nd	
		8	32–35			. (R	epeat	sub-	oop (), use	BG[1:	0] = 2	, use E	3A[1:0] = 0	instea	d ⁴	
		9	36–39		•	\mathcal{I}	\bigcirc_{R}	epeat	sub-	oop 1	, use	BG[1:	0] = 3	, use E	3A[1:0)] = 1 i	instea	d ⁴	
		10	40–43		7	7	R	epeat	sub-	oop (), use	BG[1:	0] = 2	, use E	3A[1:0] = 2	instea	d ⁴	
		11	44–47		L	-	R	epeat	sub-	oop 1	, use	BG[1:	0] = 3	, use E	3A[1:0] = 3	instea	d ⁴	
		12	48-51		7		R	epeat	sub-	oop (), use	BG[1:	0] = 2	use E	BA[1:0] = 1	instea	d ⁴	
		13	52-55	N			R	epeat	sub-	oop 1	, use	BG[1:	0] = 3	, use E	3A[1:0] = 2	instea	d ⁴	
		14	56–59	Y			R	epeat	sub-	oop (), use	BG[1:	0] = 2	use E	3A[1:0] = 3	instea	d ⁴	
		15	60-63				R	epeat	sub-	oop 1	, use	BG[1:	0] = 3	use E	3A[1:0	0] = 0	instea	d ⁴	

Notes: 1. DQS_t, DQS_c are V_{DDQ} when not toggling.

2. Burst sequence driven on each DQ signal by a READ command. Outside burst operation, DQ signals are V_{DDQ}.

TA	BLE	66: I	_{DD4W} MEA	SUREM	ENT:	Loc	P P	ATTE	RN ¹										
CK_c, CK_t,	CKE	Sub-Loop	Cycle Number	Com- mand	CS_n	ACT_n	RAS_n/A1 6	CAS_n/A1 5	WE_n/A14	тдо	BG[1:0}	BA[1:0]	A12/BC_n	A[17,13,1 1]]	A[10]/AP	A[9:7]	A[6:3]	A[2:0]	Data ³
		0	0	WR	0	1	1	0	0	1	0	0	0	0	0	0	0	0	D0 = 00, D1 = FF,
			1	D	1	0	0	0	0	1	0	0	0	0	0	0	0	0	D2 = FF, D3 = 00, D4 = FF, D5 = 00,
			2, 3	D_n, D_n	1	1	1	1	0	1	3	3	0	0	0	7	F	0	D5 = 00, D7 = FF
		1	4	WR	0	1	1	0	0	1	1	1	0	0	0	7	F	0	D0 = FF, D1 = 00
			5	D	1	0	0	0	0	1	0	0	0	0	0	0	0	0	D2 = 00, D3 = FF D4 = 00, D5 = FF
			6, 7	D_n, D_n	1	1	1	1	0	1	3	3	0	0	0	7	F	0	D4 = 00, D3 = FF D5 = FF, D7 = 00
		2	8–11					Repea	at sub	-loop	0, use	BG[1:	:0] = [0:), use	3) 1.6	= 2 i	nstea	d	
g	gh	3	12–15					Repea	at sub	-loop	1, use	BG[1:	:0] = [l, use i	PA[1:0)] = 3 i	nstea	d	
Toggling	Static High	4	16–19					Repea	at sub	-loop	0, use	BG[1:	:0]=(0) ase I	3A[1:0)] = 1 i	nstea	d	
ا کن	Stat	5	20–23					Repea	at sub	-loop	1, use	BG[pid i	l, use l	3A[1:0)] = 2 i	nstea	d	
		6	24–27					Repea	at sub	-loop	0, use	PC(1	.0] = (), use l	3A[1:0)] = 3 i	nstea	d	
		7	28–31											I, use I					
		8	32–35					Repea	t sub	-loop	, use	BG[1:	0] = 2	2, use E	BA[1:0] = 0 i	nstead	d ⁴	
		9	36–39					Repea	t sub	took	1, use	BG[1:	0] = 3	B, use E	BA[1:0] = 1 i	nstead	d ⁴	
		10	40–43					Repea	t sub	loop	0, use	BG[1:	0] = 2	2, use E	BA[1:0] = 2 i	nstead	d ⁴	
		11	44–47					Repva	t s lb	-loop	1, use	BG[1:	0] = 3	B, use E	BA[1:0] = 3 i	nstead	d ⁴	
		12	48–51					lacksquare						2, use E					
		13	52–55			•	→							B, use E					
		14	56–59			7	7	Repea	t sub	-loop	0, use	BG[1:	0] = 2	2, use E	BA[1:0] = 3 i	nstead	d ⁴	
		15	60–63		1	<u>~</u>	<u> </u>	Repea	t sub	-loop	1, use	BG[1:	0] = 3	B, use E	BA[1:0] = 0 i	nstead	d ⁴	

Notes: 1. DQS_t, DQS_c are V_{DDQ} when not toggling.

Durst sequence driven on each DQ signal by WRITE command. Outside burst operation, DQ signals are V_{DDQ}.

Та	BLE	67: I	DD4Wc MEA	SURE	MENT	r-Lo	ор Р	ATTE	ERN ¹										
CK_c, CK_t,	CKE	Sub-Loop	Cycle Number	Command	CS_n	ACT_n	RAS_n/A16	CAS_n/A15	WE_n/A14	ТДО	BG[1:0}	BA[1:0]	A12/BC_n	A[17,13,11]]	A[10]/AP	A[9:7]	A[6:3]	A[2:0]	Data ⁴
		0	0	WR	0	1	1	0	0	1	0	0	0	0	0	0	0	0	D0 = 00, D1 = FF,
			1, 2	D, D	1	0	0	0	0	1	0	0	0	0	0	0	0	0	D2 = FF, D3 = 00,
			3, 4	D_n, D_n	1	1	1	1	0	1	3	3	0	0	0	7	F	0	D4 = FF, D5 = 00, D8 = CRC
		1	5	WR	0	1	1	0	0	1	1	1	0	0	0	7	F	0	D0 = FF, D1 = 00,
			6, 7	D, D	1	0	0	0	0	1	0	0	0	0	0	0	0	0	D2 = 00, D3 = FF,
			8, 9	D_n, D_n	1	1	1	1	0	1	3	3	0	0)	F	0	D4 = 00, D5 = FF, D5 = FF, D7 = 00 D8 = CRC
	·	2	10–14					Repea	at sub	-loop	0, use	BG[1	:0] = [0:	use	A[1:0] = 2 i	nstea	d	
_ βι	igh	3	15–19					Repea	at sub	-loop	1, use	BG[1	:0] 1	use I	3A[1:0)] = 3 i	nstea	d	
Toggling	Static High	4	20–24					Repea	at sub	-loop	0, use	BG[1	0	, use l	3A[1:0)] = 1 i	nstea	d	
잍	Stat	5	25–29					Repea	at sub	-loop	1, use	MIT	.0] = 1	, use l	3A[1:0)] = 2 i	nstea	d	
		6	30–34)] = 3 i			
		7	35–39					Repea	at sub	-loop	, use	BG[1	:0] = 1	, use l	3A[1:0)] = 0 i	nstea	d	
		8	40–44					Repea	it sub	100P	0, use	BG[1:	0] = 2	, use E	3A[1:0] = 0 i	nstead	d ⁴	
		9	45–49					Repea	t sub	-loop	1, use	BG[1:	0] = 3	, use E	3A[1:0] = 1 iı	nstead	d ⁴	
		10	50-54					Repo	t sub	-loop	0, use	BG[1:	0] = 2	, use E	BA[1:0] = 2 i	nstead	d ⁴	
		11	55–59					Peper	t sub	-loop	1, use	BG[1:	0] = 3	, use E	3A[1:0] = 3 iı	nstead	d ⁴	
		12	60–64			•		Pepea	t sub	-loop	0, use	BG[1:	0] = 2	, use E	BA[1:0] = 1 i	nstead	d ⁴	
		13	65–69			7	7	Repea	t sub	-loop	1, use	BG[1:	0] = 3	, use E	3A[1:0] = 2 i	nstead	d ⁴	
		14	70–74		1	<u> </u>	• 	Repea	t sub	-loop	0, use	BG[1:	0] = 2	, use E	BA[1:0] = 3 i	nstead	d ⁴	
		15	75–79		<u>//</u>	*		Repea	t sub	-loop	1, use	BG[1:	0] = 3	, use E	3A[1:0] = 0 i	nstead	d ⁴	

1. Pattern provided for reference only.
2. DQS_t, DQS_c are V_{DDQ} when not toggling.
3. Burst sequence driven on each DQ signal by WRITE command. Outside burst operation, DQ signals are V_{DDQ} .

TA	BLE	68:	_{DD5B} MEAS	UREME	NT-L	_OOF	РАТ	TER	N ¹										
CK_c, CK_t,	CKE	Sub-Loop	Cycle Number	Command	CS_n	ACT_n	RAS_n/A16	CAS_n/A15	WE_n/A14	ООТ	BG[1:0] ²	BA[1:0]	A12/BC_n	A[17,13,11]]	A[10]/AP	A[9:7]	A[6:3]	A[2:0]	Data ³
		0	0	REF	0	1	0	0	1	0	0	0	0	0	0	0	0	0	-
		2	1	D	1	0	0	0	0	0	0	0	0	0	0	0	0	0	-
			2	D	1	0	0	0	0	0	0	0	0	0	0	0	0	0	-
			3	D_n	1	1	1	1	1	0	3	3	0	0	0	7	F	0	-
			4	D_n	1	1	1	1	1	0	3	3	0	0	0	7	F	0	-
			5–8					Repe	at pat	tern 1	4, us	se BG[1:0] =	1, use	BA[1	9]=	inste	ead	
			9–12					Repe	at pat	tern 1	4, us	se BG[1:0] =	0, use	e [A[1	.0] = [2 inste	ead	
			13–16					Repe	at pat	tern 1	4, us	se BG[1:0] =	1 ase	RA[:0] = [3 inste	ead	
			17–20					Repe	at pat	tern 1	4, us	se BG[1:0]	0, us	▶BĀ[1	:0] =	1 inste	ead	
ng	ligh		21–24					Repe	at pat	tern 1	4, us	se BG[191=	1, use	e BA[1	:0] = [2 inste	ead	
Toggling	Static High		25–28					Repe	at pat	tern 1	4, us	se BC	1:0 =	0, use	e BA[1	:0] = [3 inste	ead	
٢	Sta		29–32					Repe	at pat	tern 1	4, u	s oui	1:0] =	: 1, use	e BA[1	:0] =	0 inste	ead	
			33–36					Repea	at pat	tern 1	4, us	se BG[1:0] =	2, use	BA[1	:0] = 0) inste	ead ⁴	
			37–40					Repea	at pat	tern 1	4, us	se BG[1:0] =	3, use	BA[1	:0] = 1	1 inste	ead ⁴	
			41–44					Repea	at pa	етт	4, us	se BG[1:0] =	2, use	BA[1	:0] = 2	2 inste	ead ⁴	
			45-48					Repe	et pat	ern 1	4, us	se BG[1:0] =	3, use	BA[1	:0] = 3	3 inste	ead ⁴	
			49–52					Repea	at bat	tern 1	4, us	se BG[1:0] =	2, use	BA[1	:0] = 1	1 inste	ead ⁴	
			53-56					Sepea	at pat	tern 1	4, us	se BG[1:0] =	3, use	BA[1	:0] = 2	2 inste	ad ⁴	
			57–60			•		Repea	at pat	tern 1	4, us	se BG[1:0] =	2, use	BA[1	:0] = 3	3 inste	ead ⁴	
			61–64			7	7	Repea	at pat	tern 1	4, us	se BG[1:0] =	3, use	BA[1	:0] = () inste	ad ⁴	
		2	65 <i>n</i> RFC -		7	/			R	epeat	sub-l	oop 1	; trun	cate if	nece	ssary			

QS_t, DQS_c are V_{DDQ}. 2. DQ signals are V_{DDQ}.

TA	BLE	69: I	_{dd7} Measuremen	T-Loo	P PA	TTEF	RN ¹												
CK_t, CK_c	CKE	Sub-Loop	Cycle Number	Command	CS_n	ACT_n	RAS_n/A16	CAS_n/A15	WE_n/A14	ОБТ	BG[1:0] ²	BA[1:0]	A12/BC_n	A[17,13,11]]	A[10]/AP	A[9:7]	A[6:3]	A[2:0]	Data ³
		0	0	ACT	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
			1	RDA	0	1	1	0	1	0	0	0	0	0	1	0	0	0	
			2	D	1	0	0	0	0	0	0	0	0	0	0	0	0	0	-
			3	D_n	1	1	1	1	1	0	3	3	0	0	0	7	F	0	-
						Rep	eat pa	ttern	23 u	ntil n	RRD -	1, if <i>n</i>	RRD >	4. Tru	uncat	e if ne	cessa	ry	
		1	<i>n</i> RRD	ACT	0	0	0	0	0	0	1	1	0	*	2	0	0	0	-
			nRRD+1	RDA	0	1	1	0	1	0	1	1	0	O	1	0	0	0	
					F	Repea	t patt	ern 2.	3 un	til 2 ×	nRRD) - 1, if	nRPD	4.1	Γrunca	ate if ı	necess	ary	
		2	$2 \times nRRD$				Repe	at suk	o-loop	0, us	e BG[ˈ	1:0] =	0, use	BA[1:	:0] = 2	inste	ad		
		3	$3 \times nRRD$				Repe	at suk	o-loop	1, us	e B Q	1:0 =	1, use	BA[1:	:0] = 3	inste	ad		
		4	$4 \times nRRD$		Rep	oeat p	atterr	า 23	until <i>i</i>	nFAW	1	ηFAW	/ > 4 >	< nRR[D. Tru	ncate	if nec	essary	′
		5	<i>n</i> FAW				Repe	at suk	o-loop	0, 13	e BG[1:0] =	0, use	BA[1:	:0] = 1	inste	ad		
		6	nFAW + nRRD				Repe	at suk	o-loop	1, us	e BG[1:0] =	1, use	BA[1:	:0] = 2	inste	ad		
) gc	lgh	7	$nFAW + 2 \times nRRD$				Repe	at sub	Кор	0, us	e BG[ˈ	1:0] =	0, use	BA[1:	:0] = 3	inste	ad		
Toggling	Static High	8	$nFAW + 3 \times nRRD$				Repe	a suk	оор	1, us	e BG[ˈ	1:0] =	1, use	BA[1:	[0] = 0	inste	ad		
ŏ	Stat	9	$nFAW + 4 \times nRRD$				\frown	1,		Re	epeat	sub-lo	op 4						
		10	$2 \times nFAW$			/	Repe	at suk	o-loop	0, us	e BG[1:0] =	2, use	BA[1:	[0] = 0	inste	ad		
		11	$2 \times nFAW + nRRD$			V	Repe	at suk	o-loop	1, us	e BG[1:0] =	3, use	BA[1:	:0] = 1	inste	ad		
		12	$2 \times nFAW + 2 \times nRRD$	-	7	<u>ر</u>	Repe	at suk	o-loop	0, us	e BG[1:0] =	2, use	BA[1:	:0] = 2	inste	ad		
		13	$2 \times nFAW + 3 \times nRRD$	18			Repe	at suk	o-loop	1, us	e BG[1:0] =	3, use	BA[1:	:0] = 3	inste	ad		
		14	$2 \times nFAW + 4$ $nRRD$	7						Re	epeat	sub-lo	op 4						
		15	3 × nFAW				Repe	at suk	o-loop	0, us	e BG[1:0] =	2, use	BA[1:	:0] = 1	inste	ad		
		16	$3 \times nFAW + nRRD$				Repe	at suk	o-loop	1, us	e BG[1:0] =	3, use	BA[1:	:0] = 2	inste	ad		
		17	$3 \times nFAW + 2 \times nRRD$				Repe	at suk	o-loop	0, us	e BG[1:0] =	2, use	BA[1:	:0] = 3	inste	ad		
		18	$3 \times nFAW + 3 \times nRRD$				Repe	at suk	o-loop	1, us	e BG[1:0] =	3, use	BA[1:	:0] = 0	inste	ad		
		19	$3 \times nFAW + 4 \times nRRD$							Re	epeat	sub-lo	op 4						
		20	4×nFAW		R	epeat	patte	rn 2	3 unti	I nRC	- 1, if	nRC >	$4 \times n$	FAW.	Trunc	ate if	neces	sary	

Notes: 1. DQS_t, DQS_c are V_{DDQ} .

2. DQ signals are $V_{\rm DDQ}$ except when burst sequence drives each DQ signal by a READ command.

I_{DD} Specifications

TABL	E 70:	: Тім	INGS	USE	D FOI	R I _{DD} ,	I _{PP} , 4	AND	_{DDQ} N	/IEAS	UREN	/ENT	-Loo	P PAT	TERN	IS				
			R4-16			R4-18)R4-21		_)R4-24		_	DR4-26		DI	DR4-32	200	
Syml	ool	10-10-10	11-11-11	12-12-12	12-12-12	13-13-13	14-14-14	14-14-14	15-15-15	16-16-16	15-15-15	16-16-16	17-17-17	17-17-17	18-18-18	19-19-19	20-20-20	22-22-22	24-24-24	Uni t
^t CK			1.25			1.071	•		0.937	•		0.833	•		0.75	•		0.625	•	ns
CL		10	11	12	12	13	14	14	15	16	15	16	17	17	18	19	20	22	24	CK
CW	L	9	11	11	10	12	12	11	14	14	12	16	16	14	18	18	16	20	20	CK
nRC	D	10	11	12	12	13	14	14	15	16	15	16	17	17	18	19	20	22	24	CK
nRo	2	38	39	40	44	45	46	50	51	52	54	55	57 •	W)	61	62	72	74	76	CK
nRI)	10	11	12	12	13	14	14	15	16	15	16	12	17	18	19	20	22	24	CK
nRA	S		28			32			36			39	71,		43			52		CK
<i>n</i> FAW	x4 ¹		16			16			16		•	<u> </u>	,,		16			16		CK
	x8		20			22			23			26			28			34		CK
	x16		28			28			32	<		36			40			48		CK
nRRD_	x4		4			4			4	7		4			4			4		CK
S	x8		4			4			4			4			4			4		CK
	x16		5			5		<	6			7			7			9		CK
nRRD_	x4		5			5		4	Y			6			7			8		CK
L	x8		5			5	_(6			6			7			8		CK
	x16		6			6	\leftarrow		7			8			9			11		CK
nCCD	_S		4			Q.	<u> </u>		4			4			4			4		CK
nCCD	_L		5			5			6			6			7			8		CK
<i>n</i> WTR	L_S		2			3			3			3			4			4		CK
nWTR			6	2	Y	7			8			9			10			12		CK
nRFC 2			128			150			171			193			214			256		CK
nRFC 4			208	1.071 12 12 13 1 11 10 12 1 12 12 13 1 140 44 45 4 12 12 13 1 32 16 22 28 4 4 4 5 5 5 6 6 7 7 150 3 7 150 3 243 327				278			313			347			416		CK	
nRFC 8	3Gb		1.25 1.071 10 11 12 12 13 1 9 11 11 10 12 1 10 11 12 12 13 1 38 39 40 44 45 4 10 11 12 12 13 1 28 32 16 16 2 22 22 28 28 28 4 4 4 4 4 4 4 4 4 4 4 4 5 2 3 6 7 128 150 2 2 3 6 7<					374			421			467			560		CK	
nRFC 1	6Gb		440			514			587			660			733			880		CK

Current Specifications - Limits

Symbol	DDR4-1600	DDR4-1866	DDR4-2133	DDR4-2400	Unit
I _{DD0} : One bank ACTIVATE-to-PRE-					mA
CHARGE current	264	264	272	280	mA
I _{PP0} : One bank ACTIVATE-to-PRECHARGE					mA
I _{PP} current	18.4	18.4	18.4	18.4	mA
I _{DD1} : One bank ACTIVATE-to-READ-to-					mA
PRECHARGE current	312	312	320	326	mA
I _{DD2N} : Precharge standby current	176	176	184	200	mA
I _{DD2NT} : Precharge standby ODT current			•		mA
	240	240	256	276	mA
I _{DD2P} : Precharge power-down current	120	120	121	128	mA
I _{DD2Q} : Precharge quiet standby current	156	156	136	164	mA
I _{DD3N} : Active standby current	244	244	252	268	mA
I _{PP3N} : Active standby I _{PP} current	12	12	12	12	mA
I _{DD3P} : Active power-down current	176	JEI,	176	176	mA
I _{DD4R} : Burst read current		~			mA
	800	800	860	920	mA
I _{DD4W} : Burst write current	· · · · · · · · · · · · · · · · · · ·				mA
	90-7	984	1104	1256	mA
I _{DD5B} : Burst refresh current (1X REF)					mA
	760	760	760	768	mA
I _{PP5B} : Burst refresh I _{PP} current (1X REF)					mA
	88	88	88	88	mA
I _{DD6N} : Self refresh current; 0–85°C ¹	80	80	80	80	mA
I _{DD6E} : Self refresh current; 0–95°C ²	108	108	108	108	mA
I _{DD6R} : Self refresh current; 0–45C ^{3,4}	40	40	40	40	mA
I _{DD6A} : Auto self refresh current (25°C) ⁴	36	36	36	36	mA
I _{DD6A} : Auto self refresh current (45€) ⁴	40	40	40	40	mA
I _{DD6A} : Auto self refresh current (75°C) ⁴	64	64	64	64	mA
I _{DD7} : Bank interleave read current					mA
	920	920	960	1000	mA
I _{PP7} : Bank interleave read I _{PP} current					mA
	48	48	56	64	mA
I _{DD8} : Maximum power-down current	72	72	72	72	mA

- Notes: 1. Applicable for MR2 settings A7 = 0 and A6 = 0; manual mode with normal temperature range of operation (0-85°C).
 - 2. Applicable for MR2 settings A7 = 1 and A7 = 0; manual mode with extended temperature range of operation (0-95°C).

- 3. Applicable for MR2 settings A7 = 0 and A7 = 1; manual mode with reduced temperature range of operation $(0-45^{\circ}C)$.
- 4. IDD6R and IDD6A values are typical.
- 5. When additive latency is enabled for I_{DD0} , current changes by approximately 0%.
- 6. When additive latency is enabled for I_{DD1}, current changes by approximately +4%.
- 7. When additive latency is enabled for I_{DD2N} , current changes by approximately +0.6%.
- 8. When DLL is disabled for I_{DD2N}, current changes by approximately 0%.
- 9. When CAL is enabled for I_{DD2N} , current changes by approximately –44%.
- 10. When gear-down is enabled for IDD2N, current changes by approximately 0%.
- 11. When CA parity is enabled for I_{DD2N}, current changes by approximately +14%.
- 12. When additive latency is enabled for I_{DD3N}, current changes by approximately +0.6%.
- 13. When additive latency is enabled for I_{DD4R}, current changes by approximately +5%.
- 14. When read DBI is enabled for I_{DD4R}, current changes by approximately 0%.
- 15. When read DBI is enabled for I_{DDO4R}, current changes by per eximately –35%.
- 16. When additive latency is enabled for I_{DD4W}, current changes by approximately +1%.
- 17. When write DBI is enabled for I_{DD4W}, current changes by approximately 0%.
- 18. When write CRC is enabled for I_{DD4W} , current changes by approximately -8% (2133/2400), -5% (1600/1866).
- 19. When CA parity is enabled for I_{DD4W}, current changes by approximately +8%.
- 20. When 2X REF is enabled for I_{DD5B}, current changes by approximately –14%.
- 21. When 4X REF is enabled for I_{DD5B}, covert changes by approximately –33%.
- 22. I_{PP0} test and limit is applicable for I_{DP0} and I_{DD1} conditions.
- 23. I_{PP3N} test and limit is applicable for all I_{DD2x} , I_{DD3x} , I_{DD4x} , I_{DD6} , and I_{DD8} conditions; that is, testing I_{PP3N} should satisfy the I_{PP} s for the noted I_{DD} tests.

TABLE 72: I_{DD} , I_{PP} , and I_{DDQ} Current	UITS DDR4-2666	THROUGH DDI	R4-3200		
Symbol	DDR4-1866	DDR4-2133	DDR4-2400	DDR4-2666	Unit
I _{DD0} : One bank ACTIVATE-to-PRECHARGE current	240	260	260	280	mA
I _{PPO} : One bank ACTIVATE-to-PR*ZHARGE I _{PP} current	14.4	14.4	14.4	14.4	mA
I _{DD1} : One bank ACTIVATE-to-READ-to- PRECHARGE current	280	300	300	320	mA
I _{DD2N} : Precharge standby current	160	168	180	200	mA
I _{DD2NT} : Precharge standby ODT current	220	240	240	280	mA
I _{DD2P} : Precharge power-down current	108	108	116	136	mA
IDD2Q: Precharge quiet standby current	140	140	148	160	mA
I _{DD3N} : Active standby current	220	220	240	260	mA
I _{PP3N} : Active standby I _{PP} current	12	12	12	12	mA
I _{DD3P} : Active power-down current	160	160	160	160	mA

Table 72: I_{DD} , I_{PP} , and I_{DDQ} Current I	LIMITS (CONTINUED))			
Symbol	DDR4-1866	DDR4-2133	DDR4-2400	DDR4-2666	Unit
I _{DD4R} : Burst read current					
	720	780	820	900	mA
I _{DD4W} : Burst write current					
	880	1000	1140	1240	mA
I _{DD5B} : Burst refresh current (1X REF)					
	680	680	700	700	mA
I _{PP5B} : Burst refresh IPP _P Gurrent (1X REF)					
	100	100	100	100	mA
I _{DD6N} : Self refresh current; 0–85°C ¹	72	72	72	72	mA
I _{DD6E} : Self refresh current; 0–95°C ²	96	96	96	96	mA
I _{DD6R} : Self refresh current; 0–45C ^{3, 4}	48	48	48	48	mA
I _{DD6A} : Auto self refresh current (25°C) ⁴	36	186	36	36	mA
I _{DD6A} : Auto self refresh current (45°C) ⁴	48		48	48	mA
I _{DD6A} : Auto self refresh current (75°C) ⁴	72	72	72	72	mA
I _{DD7} : Bank interleave read current	,(
	82	860	900	940	mA
I _{PP7} : Bank interleave read I _{PP} current	,4				
	48	56	64	64	mA
I _{DD8} : Maximum power-down current	52	64	64	64	mA

Notes:

- 2. Application of MR2 settings A7 = 1 and A7 = 0; manual mode with extended temperature range from (0–95 $^{\circ}$ C).
- 3. Applitable for MR2 settings A7 = 0 and A7 = 1; manual mode with reduced temperature range of operation $(0-45^{\circ}\text{C})$.

DD6R and IDD6A values are typical.

- When additive latency is enabled for IDDO, current changes by approximately 0%.
- 6. When additive latency is enabled for _{IDD1}, current changes by approximately +4%.
- 7. When additive latency is enabled for I_{DD2N} , current changes by approximately +0.6%.
- 8. When DLL is disabled for I_{DD2N}, current changes by approximately 0%.
- 9. When CAL is enabled for I_{DD2N}, current changes by approximately –44%.
- 10. When gear-down is enabled for I_{DD2N}, current changes by approximately 0%.
- 11. When CA parity is enabled for I_{DD2N} , current changes by approximately +14%.
- 12. When additive latency is enabled for I_{DD3N}, current changes by approximately +0.6%.
- When additive latency is enabled for I_{DD4R}, current changes by approximately +5%.
- 14. When read DBI is enabled for I_{DD4R}, current changes by approximately 0%.
- 15. When read DBI is enabled for I_{DDO4R}, current changes by approximately 35%.
- 16. When additive latency is enabled for I_{DD4W} , current changes by approximately +1% (x16).

Current Specifications - Limits

- 17. When write DBI is enabled for I_{DD4W} , current changes by approximately 0%.
- 18. When write CRC is enabled for I_{DD4W} , current changes by approximately -8% (2133/2400), -5% (1600/1866).
- 19. When CA parity is enabled for I_{DD4W}, current changes by approximately +8%
- 20. When 2X REF is enabled for I_{DD5B}, current changes by approximately –14%.
- 21. When 4X REF is enabled for I_{DD5B} , current changes by approximately -33%.
- 22. IPP0 test and limit is applicable for I_{DD0} and I_{DD1} conditions.
- 23. IPP3N test and limit is applicable for all I_{DD2x} , I_{DD3x} , I_{DD4x} , I_{DD6} , and I_{DD8} conditions; that is, testing I_{PP3N} should satisfy the I_{PP} s for the noted I_{DD} tests.

ADVANCED INFORMATION

Speed Bin Tables

TABLE 73	: DDR4-160	00 SPEED B	INS AND (OPERATING CONDITIONS		
DDR4-1600 S	peed Bin				-125	
CL-nRCD-nRF	•				2-12-12	
Parameter			Symbol	Min	Max	Unit
Internal READ	command to fi	rst data	^t AA	15.00	18.00	ns
Internal READ with read DBI	command to fi enabled	rst data	^t AA_DBI	_	^t AA (MAX) + 2 <i>n</i> CK	ns
ACTIVATE to it delay time	nternal READ o	r WRITE	^t RCD	15.00) –	ns
PRECHARGE c	ommand perio	d	^t RP	15.00) –	ns
ACTIVATE-to-l period	PRECHARGE co	mmand	tRAS	35	9× ^t REFI	ns
ACTIVATE-to-	ACTIVATE or RE	FRESH	^t RC	tras - trans	+ -	ns
READ: non- DBI	READ: DBI	WRITE	Symbol	Min	Max	Unit
CL = 9	CL = 11	CWL = 9	tCK4		Reserved	ns
CL = 10	CL = 12	CWL = 9	tCK4	1.5	1.6	ns
CL = 10	CL = 12	CWL = 9, 11	tCK4		Reserved	ns
CL = 11	CL = 13	CWL = 9, 11	tCK4	<i>'</i> 4'	Reserved	ns
CL = 12	CL = 14	CWL = 9, 11	tCK4	1.25	<1.5	ns
Supported CL	settings	·			10, 12	nCK
Supported CL	settings with re	ead DBI		()	12, 14	nCK
Supported CV	VL settings	·			9, 11	nCK

Notes:

- ed by table is only valid with DLL enabled and gear-down mode disabled. evoperating in 2^tCK WRITE preamble mode, CWL must be programmed to a value east 1 clock greater than the lowest CWL setting supported in the applicable ^tCK

programmed value of CWL must be less than or equal to programmed value of CL. K(AVG) MIN.

5. The DRAM supports 13.5ns with CL9 operation at defined clock rates.

14-14-14 Parameter					OPERATING CONDITIONS -107	,
Nin Max						
15.00 18.0						
TAA_DB TAA_				-		
With read DBI enabled CMIN + 2nCK						18.00
ACTIVATE-to-PRECHARGE command period tRP 15.00 - ACTIVATE-to-PRECHARGE command period tRAS 9 × tREFI period ACTIVATE-to-ACTIVATE or REFRESH tRC tRAS + tRP tRP			to first data	^t AA_DBI	(MIN) +	-
ACTIVATE-to-PRECHARGE command beriod			D or WRITE	^t RCD	15.00	-
ACTIVATE-to-ACTIVATE or REFRESH transported transpor	PRECHAR	GE command pe	eriod	^t RP	15.00	-
TRP Command period TRP CREAD: Min Max Max CL = 9 CL = 11 CWL = 9 TCK6 CL = 10 CL = 12 CWL = 9 TCK6 CL = 10 CL = 12 CWL = 11 TCK6 CL = 11 CL = 13 CWL = 9, 11 TCK6 CL = 12 CL = 14 CWL = 9, 11 TCK6 CL = 12 CL = 14 CWL = 9, 11 TCK6 CL = 12 CL = 14 CWL = 10, 12 TCK6 CL = 13 CL = 15 CWL = 10, 12 TCK6 CL = 14 CL = 16 CWL = 10, 12 TCK6 CL = 14 CL = 16 CWL = 10, 12 TCK6 CL = 14 CL = 16 CWL = 10, 12 TCK6 CL = 14 CL = 16 CWL = 10, 12 TCK6 CL = 14 CL = 16 CWL = 10, 12 TCK6 CL = 14 CL = 16 CWL = 10, 12 TCK6 CL = 14 CL = 16 CWL = 10, 12 TCK6 CL = 14 CL = 16 CWL = 10, 12 TCK6 CL = 14 CL = 16 CWL = 10, 12 TCK6 CL = 14 CL = 16 CWL = 10, 12 TCK6 CL = 14 CL = 16 CWL = 10, 12 TCK6 CL = 14 CL = 16 CWL = 10, 12 TCK6 CL = 14 CL = 16 CWL = 10, 12 TCK6 CL = 14 CL = 16 CWL = 10, 12 TCK6 CL = 14 CL = 16 CWL = 10, 12 TCK6 CL = 14 CL = 16 CWL = 10, 12 TCK6 CL = 14 CL = 16 CWL = 10, 12 TCK6 CL = 14 CWL = 10, 12 TCK6 CUL = 10, 12 TCK6	ACTIVATE period	-to-PRECHARGE	command	^t RAS	34	9 × ^t REFI
Min Max CL = 9 CL = 11 CWL = 9 tCK6 Reserved CL = 10 CL = 12 CWL = 9 tCK6 1.5 1.6 CL = 10 CL = 12 CWL = 11 tCK6 Reserved CL = 11 CL = 13 CWL = 9, 11 tCK6 Reserved CL = 12 CL = 14 CWL = 9, 11 tCK6 1.25 <1.5			r REFRESH	^t RC		-
CL = 10 CL = 12 CWL = 9 tCK6 CL = 10 CL = 12 CWL = 11 tCK6 CL = 11 CL = 13 CWL = 9, 11 tCK6 CL = 12 CL = 14 CWL = 9, 11 tCK6 CL = 12 CL = 14 CWL = 10, 12 tCK6 CL = 13 CL = 15 CWL = 10, 12 tCK6 CL = 14 CL = 16 CWL = 10, 12 tCK6 Supported CL settings 10, 12, 14 Supported CL settings with read DBI 12, 14, 16	READ: nonDBI	READ: DBI	WRITE	Symbol	Min	Max
CL = 10 CL = 12 CWL = 11 tCK6 Reserved CL = 11 CL = 13 CWL = 9, 11 tCK6 Reserved CL = 12 CL = 14 CWL = 9, 11 tCK6 1.25 <1.5	CL = 9	CL = 11	CWL = 9	tCK ⁶	Reserv	ed
CL = 11 CL = 13 CWL = 9, 11 t CK6 Reserved CL = 12 CL = 14 CWL = 9, 11 t CK6 1.25 < 1.5	CL = 10	CL = 12	CWL = 9	tCK ⁶	1.5	1.6
CL = 12 CL = 14 CWL = 9, 11 tCK6 1.25 <1.5	CL = 10	CL = 12	CWL = 11	^t CK ⁶	Reserv	ed
CL = 12	CL = 11	CL = 13	CWL = 9, 11	tCK ⁶	Reserv	ed
CL = 13 CL = 15 CWL = 10, 12 tCK6 Reserved CL = 14 CL = 16 CWL = 10, 12 tCl6 1.071 <1.25	CL = 12	CL = 14	CWL = 9, 11	tCK ⁶	1.25	<1.5
CL = 14 CL = 16 CWL = 10, 12 tCL ⁶ 1.071 <1.25	CL = 12	CL = 14	CWL = 10, 12	tCK ⁶	Reserv	ed
Supported CL settings 10, 12, 14 12, 14, 16	CL = 13	CL = 15	CWL = 10, 12	tCK ⁶	Reserv	ed
Supported CL settings with read DBI 12, 14, 16	CL = 14	CL = 16	CWL = 10, 12	tCI 6	1.071	<1.25
	Supporte	d CL settings	'	1	10, 12,	14
Supported CWI settings 9–12	Supporte	d CL settings wi	th read DBI	<i>D</i> ,	12, 14,	16
Supported effectings	Supporte	d CWL settings	12-	1	9–12	<u>)</u>

Notes: Speed Bin table is only valid with DLL enabled and gear-down mode disabled.

When operating in 2^tCK WRITE preamble mode, CWL must be programmed to a value at least 1 clock greater than the lowest CWL setting supported in the applicable ^tCK

- 3. The programmed value of CWL must be less than or equal to programmed value of CL.
- 4. 12.85ns is the minimum value of ^tAA and tRP when operating at DDR4-1866 at ^tCK(AVG) MIN = 1.071ns and is only a reference that does not consider the down binning strategy that 12.5ns supports.
- 5. 13.92ns is the minimum value of ^tAA and ^tRP when operating at DDR4-1866 at ^tCK(AVG) MIN = 1.071ns and is only a reference that does not consider the down binning strategy that 13.75ns supports.
- 6. ^tCK(AVG) MIN.

range.

7. The DRAM supports 13.5ns with CL9 operation and 13.75ns with CL11 operation at defined clock rates.

DDR4-2133 Speed Bin				-0	-093		
CL-nRCD-nRP			16-1	16-16-16			
Parameter	ı		Symbol	Min	Max	Unit	
Internal RE	AD command to	o first data	^t AA	15.00	18	ns	
Internal RE/ with read D	AD command to BI enabled	o first data	tAA_DBI	^t AA(MIN) + 3nCK	-	ns	
ACTIVATE t delay time	o internal READ	or WRITE	^t RCD	15.00	-	ns	
PRECHARG	E command pe	riod	^t RP	15.00	_	ns	
ACTIVATE-t	o-PRECHARGE	command	^t RAS	33	9 × ^t REFI	ns	
ACTIVATE-to-ACTIVATE or REFRESH command period		^t RC	tRAS+	-	ns		
READ: nonDBI	READ: DBI	WRITE	Symbol	Min	Max	Unit	
CL = 9	CL = 11	CWL = 9	^t CK ⁴	Rese	rved	ns	
CL = 10	CL = 12	CWL = 9	tCK4	1.5	1.6		
CL = 11	CL = 13	CWL = 9, 11	tCK4	Rese	rved	ns	
CL = 12	CL = 14	CWL = 9, 11	tCK4	1.25	<1.5	ns	
CL = 13	CL = 15	CWL = 10, 12	^t CK ⁴	Rese	rved	ns	
CL = 14	CL = 16	CWL = 10, 12	^t CK ⁴	1.071	<1.25	ns	
CL = 14	CL = 17	CWL = 11, 14	tCK4	Rese	rved	ns	
CL = 15	CL = 18	CWL = 11, 14	^t CK ⁴	Rese	rved	ns	
CL 13	1	CW 11 14	tck4	0.937	<1.071	ns	
CL = 16	CL = 19	CWL = 11, 14					
		CWL = 11, 14	7	10, 12,	14, 16	nCK	
CL = 16 Supported						nCK nCK	

Notes: To peed Bin table is only valid with DLL enabled and gear-down mode disabled.

- 2. When operating in 2^tCK WRITE preamble mode, CWL must be programmed to a value at least 1 clock greater than the lowest CWL setting supported in the applicable ^tCK range.
- 3. The programmed value of CWL must be less than or equal to programmed value of CL.
- 4. ^tCK(AVG) MIN.
- 5. The DRAM supports 13.5ns with CL9 operation and 13.75ns with CL11 operation 13.92ns with CL13 operation at defined clock rates.
- 6. If the clock period is less than 0.938ns and greater than or equal to 0.937ns, timing parameters that are derived off the clock will use 0.938ns as its reference. For example, if ^tCK (MIN) = 0.938ns and ^tRP = 14.06ns, then ^tRP would require 15nCKs (14.06ns/ 0.938ns), but if ^tCK (MIN) = 0.937ns and ^tRP = 14.06ns, then ^tRP would still require 15nCKs (14.06ns/ 0.938ns) and not 16nCKs (14.06ns/ 0.937ns).

				ERATING CONDITIONS	83	
DDR4-2400 Speed Bin CL-nRCD-nRP				-083		
Paramete	er		Symbol	Min	Max	U
Internal R	EAD command t	to first data	^t AA	14.16	18.00	
	EAD command t DBI enabled	to first data	^t AA_DBI	^t AA(MIN) + 3 <i>n</i> CK	_	1
ACTIVATE delay time	to internal REAI	D or WRITE	^t RCD	14.16	_	ı
PRECHAR	GE command pe	eriod	^t RP	14.16	_	
ACTIVATE period	-to-PRECHARGE	command	^t RAS	32	9× ^t REFI	r
ACTIVATE command	-to-ACTIVATE oi I period	r REFRESH	^t RC	tRAS +	_	ı
READ: nonDBI	READ: DBI	WRITE	Symbol	Min	Max	U
CL = 9	CL = 11	CWL = 9	tCK4	Rese	rved	ı
CL = 10	CL = 12	CWL = 9	tCK4	1.5	1.6	ı
CL = 10	CL = 12	CWL = 9, 11	tCK4	Rese	rved	ı
CL = 11	CL = 13	CWL = 9, 11	tCK4	1.25	<1.5	r
CL = 12	CL = 14	CWL = 9, 11	tCK4	1.25	<1.5	ı
CL = 12	CL = 14	CWL = 10, 12	tCK4	Rese	rved	ı
CL = 13	CL = 15	CWL = 10, 12	tCK4	1.071	<1.25	ı
CL = 14	CL = 16	CWL = 10, 12	tCK4	1.071	<1.25	ı
CL = 14	CL = 17	CWL = 11, 14	t CH4	Rese	rved	ı
CL = 15	CL = 18	CWL = 11, 14	10th	0.937	<1.071	r
CL = 16	CL = 19	CWL = 11, 14	CK ⁴	0.937	<1.071	ı
CL = 15	CL = 18	CWL = 12 16	tCK4	Rese	rved	
CL = 16	CL = 19	CWL = 12, 16	tCK4	Rese	Reserved	
CL = 17	CL = 20	CWL - 12, 16	tCK4	0.833	<0.937	
CL = 18	CL = 21	CWL = 12, 16	tCK4	0.833	<0.937	
Supporte	d CL Settings	•	<u>'</u>	10-	-18	n
Supporte	d CL settings wit	th read DBI		12–16,	12–16, 18–21	
Supporte	d CWL settings			9, 10, 11,	 12, 14, 16	n

- Notes: 1. Speed Bin table is only valid with DLL enabled and gear-down mode disabled.
 - 2. When operating in 2^tCK WRITE preamble mode, CWL must be programmed to a value at least 1 clock greater than the lowest CWL setting supported in the applicable ^tCK
 - 3. The programmed value of CWL must be less than or equal to programmed value of CL.
 - 4. tCK(AVG) MIN.
 - 5. If the clock period is less than 0.938ns and greater than or equal to 0.937ns, timing parameters that are derived off the clock will use 0.938ns as its reference. For example, if

 ${}^{t}CK$ (MIN) = 0.938ns and ${}^{t}RP$ = 14.06ns, then ${}^{t}RP$ would require 15nCKs (14.06ns/0.938ns), but if ${}^{t}CK$ (MIN) = 0.937ns and ${}^{t}RP$ = 14.06ns, then ${}^{t}RP$ would still require 15nCKs (14.06ns/0.938ns) and not 16nCKs (14.06ns/0.937ns).

DDR4-2666 Speed Bin				-075	
CL-nRCD-nRP			19-19-19		
Parameter		Symbol	Min Max	Unit	
Internal R	EAD command	to first data	^t AA	14.25 ⁵ 18.00	ns
	EAD command DBI enabled	to first data	tAA_DBI	^t AA(MIN) – + 3 <i>n</i> CK	ns
ACTIVATE delay time	to internal REA	D or WRITE	^t RCD	14.16 -	ns
PRECHAR	GE command p	eriod	^t RP	14.16 -	ns
ACTIVATE period	-to-PRECHARGE	E command	^t RAS	32 9× ^t REFI	ns
ACTIVATE command	-to-ACTIVATE o I period	r REFRESH	^t RC	tRAS + -	ns
READ: nonDBI	READ: DBI	WRITE	Symbol	Min Max	Unit
CL = 9	CL = 11	CWL = 9	tCK4	Reserved	ns
CL = 10	CL = 12	CWL = 9	tCK4	<i>'</i> /2'	ns
CL = 10	CL = 12	CWL = 9, 11	tCK4	Reserved	ns
CL = 11	CL = 13	CWL = 9, 11	tCK4	Reserved	ns
CL = 12	CL = 14	CWL = 9, 11	tCK4		ns
CL = 12	CL = 14	CWL = 10, 12	tCH4	Reserved	ns
CL = 13	CL = 15	CWL = 10, 12	CH		ns
CL = 14	CL = 16	CWL = 10, 12	CK ⁴		ns
CL = 14	CL = 17	CWL = 11.74	tCK ⁴	Reserved	ns
CL = 15	CL = 18	CWL = 11, 14	tCK4		ns
CL = 16	CL = 19	CW. 11, 14	tCK4		ns
CL = 15	CL = 18	CWL = 12, 16	tCK4	Reserved	ns
CL = 16	CL = 19	CWL = 12, 16	tCK4	Reserved	ns
CL = 17	CL = 20	CWL = 12, 16	tCK4		ns
CL = 18	CL = 21	CWL = 12, 16	tCK4		ns
CL = 17	CL = 20	CWL = 14, 18	tCK4	Reserved	ns
CL = 18	CL = 21	CWL = 14, 18	^t CK ⁴	Reserved	ns
CL = 19	CL = 22	CWL = 14, 18	tCK4		ns
CL = 20	CL = 23	CWL = 14, 18	^t CK ⁴		ns
Supported	Supported CL settings			10, 12-–20	nCK
Supported	d CL settings wi	th read DBI		12, 1416, 1823	nCK

Table 77: DDR4-2666 Speed Bins and Operating Conditions (Continued)								
DDR4-2666 Speed Bin			-0					
CL-nRCD-nRP			19-19-19					
Parameter	Symbol		Min	Max	Unit			
Supported CWL settings			9, 10, 11, 12, 14, 16, 18		nCK			

- Notes: 1. Speed Bin table is only valid with DLL enabled and gear-down mode disabled.
 - 2. When operating in 2^tCK WRITE preamble mode, CWL must be programmed to a value at least 1 clock greater than the lowest CWL setting supported in the applicable ^tCK range.
 - 3. The programmed value of CWL must be less than or equal to programmed value of CL.
 - 4. tCK(AVG) MIN.
 - 5. The DRAM supports 13.92ns with CL13 operation, 14.07i with CL15 operation, and 14.16ns with CL17 operation at defined clock rates
 - 6. If the clock period is less than 0.938ns and greater than or equal to 0.937ns, timing parameters that are derived off the clock will us 0.938ns as its reference. For example, if ${}^{t}CK$ (MIN) = 0.938ns and ${}^{t}RP$ = 14.06ns, then ${}^{t}R$ would require 15nCKs (14.06ns/0.938ns), but if ${}^{t}CK$ (MIN) = 0.937ns and ${}^{t}RP$ = 14.06ns, then ${}^{t}RP$ would still require 15nCKs (14.06ns/ 0.938ns) and not 4.06ns/ 0.937ns).

DDR4-29	33 Speed Bin			-068D				
CL-nRCD-nRP			16.	22-	22-22-22			
Paramet	er		Symbol	Min	Max	Unit		
Internal R	EAD command	to first data	^t AA	15	18.00	ns		
Internal READ command to first data with read DBI enabled		to first data	tAA_ET	^t AA(MIN) + 4nCK	-	ns		
ACTIVATE delay tim	to internal REA	D or WRITE	70	15	-	ns		
PRECHAR	GE command po	eriod	t _{RP}	15	-	ns		
ACTIVATE-to-PRECHARGE command period		command	^t RAS	32	9 x ^t REFI	ns		
ACTIVATE command	to-ACTIVATE o	r REFRESH	^t RC	^t RAS + ^t RP	-	ns		
READ: nonDBI	READ: DBI	WRITE	Symbol	Min	Max	Unit		
CL = 9	CL = 11	CWL = 9	^t CK ⁴	Re	served	ns		
CL = 10	CL = 12	CWL = 9	^t CK ⁴	1.5	1.6	ns		
CL = 10	CL = 12	CWL = 9, 11	^t CK ⁴	Re	Reserved			
CL = 11	CL = 13	CWL = 9, 11	^t CK ⁴	Re	Reserved			
CL = 12	CL = 14	CWL = 9, 11	^t CK ⁴	1.25	1.25 <1.5			
CL = 12	CL = 14	CWL = 10, 12	^t CK ⁴	Re	served	ns		
CL = 13	CL = 15	CWL = 10, 12	^t CK ⁴	Re	served	ns		

DDR4-29	DDR4-2933 Speed Bin			-068D						
CL-nRCD-nRP				22-22-22						
Paramet	er		Symbol	Min Max	Unit					
CL = 14	CL = 16	CWL = 10, 12	tCK4	1.071 <1.25	ns					
CL = 14	CL = 17	CWL = 11, 14	tCK4	Reserved	ns					
CL = 15	CL = 18	CWL = 11, 14	tCK4	Reserved	ns					
CL = 16	CL = 19	CWL = 11, 14	tCK4	0.937 <1.071	ns					
CL = 15	CL = 18	CWL = 12, 16	tCK4	Reserved	ns					
CL = 16	CL = 19	CWL = 12, 16	tCK4	Reserved	ns					
CL = 17	CL = 20	CWL = 12, 16	^t CK ⁴	Reserved	ns					
CL = 18	CL = 21	CWL = 12, 16	^t CK ⁴	0.833 < 0.937	ns					
CL = 17	CL = 20	CWL = 14, 18	^t CK ⁴	Reserved	ns					
CL = 18	CL = 21	CWL = 14, 18	^t CK ⁴	Reserved	ns					
CL = 19	CL = 22	CWL = 14, 18	^t CK ⁴	0.750 <0.833	ns					
CL = 20	CL = 23	CWL = 14, 18	^t CK ⁴	0.750 <0.833	ns					
CL = 19	CL = 23	CWL = 16, 20	^t CK ⁴	Reserved	ns					
CL = 20	CL = 24	CWL = 16, 20	^t CK ⁴	Reserved	ns					
CL = 21	CL = 26	CWL = 16, 20	^t CK ⁴	Reserved	ns					
CL = 22	CL = 26	CWL = 16, 20	^t CK ⁴	0.682 <0.750	ns					
Supporte	d CL settings	-		10, 12, 14, 16, 18, 20	nCK					
Supporte	d CL settings v	with read DBI	_<	12, 14, 16, 19, 21 23, 26	nCK					
Supporte	d CWL setting	S	70	9, 10, 11, 12, 14, 15, 16, 18, 20	nCK					

Notes: 1. Speet Bin table is only valid with DLL enabled and gear-down mode disabled.

2. When operating in 2^tCK WRITE preamble mode, CWL must be programmed to a value t least 1 clock greater than the lowest CWL setting supported in the applicable ^tCK ange.

- 3. The programmed value of CWL must be less than or equal to programmed value of CL.
- 4. tCK(AVG) MIN.
- 5. The DRAM supports 13.5ns with CL9 operation.
- 6. If the clock period is less than 0.938ns and greater than or equal to 0.937ns, timing parameters that are derived off the clock will use 0.938ns as its reference. For example, if ^tCK (MIN) = 0.938ns and ^tRP = 14.06ns, then tRP would require 15nCKs (14.06ns/ 0.938ns), but if ^tCK (MIN) = 0.937ns and ^tRP = 14.06ns, then ^tRP would still require 15nCKs (14.06ns/ 0.938ns) and not 16nCKs (14.06ns/ 0.937ns).

DDR4-3200 Speed Bin				-062 24-24-24		
CL-nRCD-nRP						
Parameter		Symbol	n Max	Uni		
Internal RI	EAD command	to first data	^t AA	18.00	ns	
Internal RI	EAD command	to first data	^t AA_DBI	MIN) –	ns	
with read	DBI enabled			CK		
	to internal REA	D or WRITE	^t RCD	5 –	ns	
delay time		• 1	too	_		
	GE command p		tRP		ns	
period	-to-PRECHARGE	command :	^t RAS	2 9× ^t REFI	ns	
	-to-ACTIVATE o	r RFFRFSH	t _{RC}	5+ -	ns	
command		T NET NEST	""	P	113	
READ:	READ: DBI	WRITE	Symbol	n Max	Uni	
CL = 9	CL = 11	CWL = 9	^t CK ⁴	Reserved	ns	
CL = 10	CL = 12	CWL = 9	tCK ⁴	5 1.6	ns	
CL = 10	CL = 12	CWL = 9, 11	tCK ⁴	Reserved	ns	
CL = 11	CL = 13	CWL = 9, 11	^t CK ⁴	Reserved	ns	
CL = 12	CL = 14	CWL = 9, 11	^t CK ⁴	<1.5	ns	
CL = 12	CL = 14	CWL = 10, 12	^t CK ⁴	Reserved	ns	
CL = 13	CL = 15	CWL = 10, 12	tCK4	Reserved	ns	
CL = 14	CL = 16	CWL = 10, 12	tCK4	71 <1.25	ns	
CL = 14	CL = 17	CWL = 11, 14	tc/4	Reserved	ns	
CL = 15	CL = 18	CWL = 11, 14	10%	Reserved	ns	
CL = 16	CL = 19	CWL = 11, 14	CK⁴	<1.071	ns	
CL = 15	CL = 18	CWL = 12.16	^t CK ⁴	Reserved	ns	
CL = 16	CL = 19	CWL = 12, 6	tCK ⁴	Reserved	ns	
CL = 17	CL = 20	CW = 12, 16	^t CK ⁴	Reserved	ns	
CL = 18	CL = 21	CWL = 12, 16	^t CK ⁴	33 <0.937	ns	
CL = 17	CL = 20	CWL = 14, 18	^t CK ⁴	Reserved	ns	
CL = 18	CL = 21	CWL = 14, 18	^t CK ⁴	Reserved	ns	
CL = 19	CL = 22	CWL = 14, 18	^t CK ⁴	50 <0.833	ns	
CL = 20	CL = 23	CWL = 14, 18	^t CK ⁴	<0.833	ns	
CL = 20	CL = 24	CWL = 16, 20	^t CK ⁴	Reserved	ns	
CL = 22	CL = 26	CWL = 16, 20	^t CK ⁴	Reserved	ns	
CL = 24	CL = 28	CWL = 16, 20	^t CK ⁴	25 <0.750	ns	
- ' '	d CL settings			9–20, 22, 24	nCk	
Supported CL settings with read DBI			14, 16, 19, 21,	nCk		

Table 79: DDR4-3200 Speed Bins and Operating Conditions (Continued)								
DDR4-3200 Speed Bin		-062						
CL-nRCD-nRP		24-24-24						
Parameter	Symbol	Min Max	Unit					
Supported CWL settings		9, 10, 11, 12, 14, 16,						
		18, 20						

- Notes: 1. Speed Bin table is only valid with DLL enabled and gear-down mode disabled.
 - 2. When operating in 2^tCK WRITE preamble mode, CWL must be programmed to a value at least 1 clock greater than the lowest CWL setting supported in the applicable ^tCK range.
 - 3. The programmed value of CWL must be less than or equal programmed value of CL.
 - 4. tCK(AVG) MIN.
 - 5. The DRAM supports 13.5ns with CL9 operation.
 - 6. If the clock period is less than 0.938ns and greater t r equal to 0.937ns, timing parameters that are derived off the clock will use 0.338ns as its reference. For example, if tCK (MIN) = 0.938ns and tRP = 14.06ns, then tRP would require 15nCKs (14.06ns/ 0.938ns), but if tCK (MIN) = 0.937ns and tRP = 4.06ns, then tRP would still require ADVANCED INTO PARTIES OF ADVANCED INTO PARTIES 1.06ns/ 0.937ns).

Refresh Parameters By Device Density

Table 80: Refresh Parameters										
Parameter Symbol				Unit	Notes					
REF command to ACT or REF command time	^t RFC	(All bank groups)	350	ns						
Average periodic refresh interval	^t REFI	0°C ≤ T _C ≤ 85°C	7.8	μs						
	,	0°C < T _C ≤ 95°C	3.9	μs						

Electrical Characteristics and AC Timing Parameters

TABLE 81: ELEC	TRICAL CHARACT	ERISTICS AND A	СТІМІ	IG PAR	AMETER	אחר יפּי	4-1600	THROUG	эн DDR	4-2400		
		L	DDR4	DDR4-1600		ODR4-1866		DDR4-2133		DDR4-2400		
Parameter		Symbol	Min	Max	M	Max	Min	Max	Min	Max	Unit	Notes
				Clock	Thning							
Clock period average ([DLL off mode)	tCK (DLL_OFF)	8	12	8	20	8	20	8	20	ns	
Clock period average		^t CK (AVG, DLL_ON)	1.25	1.6	1.071	1.6	0.937	1.6	0.833	1.6	ns	14
High pulse width average		tCH (AVG)	0.48	0.52	0.48	0.52	0.48	0.52	0.48	0.52	CK	
Low pulse width average		^t CL (AVG)	148	0.52	0.48	0.52	0.48	0.52	0.48	0.52	Ck	
Clock period jitter	Total	tJlTper_ttt	-63	63	-54	54	-47	47	-42	42	ps	
	Deterministic	^t JITpe dj	-31	31	-27	27	-23	23	-21	21	ps	
	DLL locking	tul pa Jck	-50	50	-43	43	-38	38	-33	33	ps	
Clock absolute period		CK (ABS)	MIN = ^t CK (AVG) MIN + ^t JITper_tot MIN; MAX = ^t CK (AVG) MAX + ^t JITper_tot MAX								ps	
Clock absolute high pulse width (includes duty cycle jitter)		^t CH (ABS)	0.45	-	0.45	-	0.45	-	0.45	-	^t CK (AVG)	
Clock absolute low pulse width (includes duty cycle jitter)		^t CL (ABS)	0.45	-	0.45	-	0.45	-	0.45	-	^t CK (AVG)	
Cycle-to-cycle jitter	Total	tJITcc _tot	12	25	10	107		94		83		
	Deterministic	^t JlTcc _dj	6	i3	5	4	47		42		ps	
	DLL locking	t JITcc,lck	10	00	8	6	75		67		ps	

			DDR4	l-1600	DDR4	-1866	DDR4	-2133	DDR4	-2400		
Parameter		Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Unit	Notes
Cumulative error across	2 cycles	tERR2per	-92	92	-79	79	-69	69	-61	61	ps	
	3 cycles	tERR3per	-109	109	-94	94	-82	82	-73	73	ps	
	4 cycles	tERR4per	-121	121	-104	104	-91	91	-81	81	ps	
	5 cycles	tERR5per	-131	131	-112	112	-98	98	-87	87	ps	
	6 cycles	tERR6per	-139	139	-119	119	-104	104	-92	92	ps	
	7 cycles	tERR7per	-145	145	-124	124	-109	109	-97	97	ps	
	8 cycles	tERR8per	-151	151	-129	129	-113	113	-101	101	ps	
	9 cycles	tERR9per	-156	156	-134	134	-120	120	-104	104	ps	
	10 cycles	tERR10per	-160	160	-137	137	-123	123	-107	107	ps	
	11 cycles	tERR11per	-164	164	-141	141	-126	126	-110	110	ps	
	12 cycles	tERR12per	-168	168	-144	144	-129	129	-112	112	ps	
	<i>n</i> = 13, 14 49,	^t ERR <i>n</i> per		^t El	RR <i>n</i> per MI	N = (1 + 0.	.68ln[<i>r</i>] ×	tJX per M	IN	•	ps	
	50 cycles			^t ER	Rnper MA	X = (1 + 0.	.681.[n])×	JITper M	AX			
					<u> </u>		Y	<u> </u>				
		tas	D	Q Input T			7,	15			l	
Data setup time to DQS_t, DQS_c	Base (calibrated V _{REF})	^t DS		R	efer to DC (appr	cvimately	0.15 t CK t	cification s o 0.28 ^t CK			-	
	Noncalibrated V _{REF}	^t PDA_S				minim	um of 0.5	IU			IU	
Data hold time from DQS_t, DQS_c	Base (calibrated V _{REF})	^t DH		. ~	• •	•		cification s o 0.28 ^t CK			-	
	Noncalibrated V _{REF}	^t PDA_H		11	•	minim	um of 0.5	IU			IU	
DQ and DM minimum dat for each input	a pulse width	^t DIPW	6.58	7 -	0.58	-	0.58	-	0.58	-	IU	
			DQ Outpu	t Timing	(DLL enab	led)						
DQS_t, DQS_c to DQ skew access	ı, per group, per	^t DQSQ	_	0.16	-	0.16	-	0.16	-	0.17	IU	
DQ output hold time from	n DQS_t, DQS_c		0.76	-	0.76	-	0.76	_	0.76	_	IU	
Data Valid Window per de		fDVW _d	0.63		0.63		0.64		0.64		IU	
Data Valid Window per de ^t QH - ^t DQSQ each device		^t DVW _p	0.66	-	0.66	-	0.69	-	0.72	-	IU	

		DDR4	-1600	DDR4	-1866	DDR4	-2133	DDR4	-2400		
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Unit	Notes
DQ Low-Z time from CK_t, CK_c	^t LZDQ	-450	225	-390	195	-360	180	-360	150	ps	
DQ High-Z time from CK_t, CK_c	tHZDQ	_	225	_	195	-	180	-	150	ps	
		D	Q Strobe	Input Tim	ing						
DQS_t, DQS_c rising edge to CK_t, CK_c rising edge	^t DQSS	-0.27	0.27	-0.27	0.27	-0.27	0.27	-0.27	0.27	CK	
DQS_t, DQS_c differential input low pulse width	^t DQSL	0.46	0.54	0.46	0.54	0.46	0.54	0.46	0.54	CK	
DQS_t, DQS_c differential input high pulse width	^t DQSH	0.46	0.54	0.46	0.54	0.46	0.54	1.46	0.54	CK	
DQS_t, DQS_c falling edge setup to CK_t, CK_c rising edge	^t DSS	0.18	-	0.18	-	0.18		0.18	-	CK	
DQS_t, DQS_c falling edge hold from CK_t, CK_c rising edge	^t DSH	0.18	-	0.18	-	0.18	-	0.18	-	CK	
DQS_t, DQS_c differential WRITE preamble	^t WPRE	0.9	-	0.9	1	0.9	-	0.9	-	CK	
DQS_t, DQS_c differential WRITE postamble	^t WPST	0.33	-	0.33	1	0.33	-	0.33	-	CK	
		DQS Strob	e Output	Timing (E	LL enabl	ed)					
DQS_t, DQS_c rising edge output access time from rising CK_t, CK_c	^t DQSCK	-225	225	-195	195	-180	180	-175	175	ps	
DQS_t, DQS_c rising edge output var- iance window per DRAM	^t DQSCKi	-	370	-	330	-	310	-	290	ps	
DQS_t, DQS_c differential output high time	^t QSH	0.38	_	0.38	-	0.38	-	0.38	-	CK	
DQS_t, DQS_c differential output low time	^t QSL	38	-	0.38	-	0.38	-	0.38	-	CK	
DQS_t, DQS_c Low-Z time (RL - 1)	^t LZDQ\$	-450	225	-390	195	-360	180	-300	150	ps	
DQS_t, DQS_c High-Z time (RL + BL/2)	HZYQS	-	225	_	195	-	180	180	150	ps	
DQS_t, DQS_c differential READ preamble	RPŘE	0.9	-	0.9	-	0.9	-	0.9	-	CK	
DQS_t, DQS_c differential READ postam- ble	^t RPST	0.33	-	0.33	-	0.33	-	0.33	-	CK	

			DDR4	l-1600	DDR4	-1866	DDR4	-2133	DDR4	I-2400		
Parameter		Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Unit	Note
DLL locking time		^t DLLK	597	-	597	-	768	-	768	-	CK	2, 4
CMD, ADDR setup time	Base	^t IS	115	-	100	_	80	_	62	-	ps	
to CK_t, CK_c Base ref- erenced to V _{IH(AC)} and _{VIL(AC)} levels	V _{REFCA}	^t IS _{VREF}	215	-	200	-	180	-	162	-	ps	
CMD, ADDR hold time	Base	^t IH	140	-	125	-	105	-	87	_	ps	
to CK_t, CK_c Base referenced to V _{IH(DC)} and V _{IL(DC)} levels	V _{REFCA}	^t IH _{VREF}	215	-	200	-	180		162	-	ps	
CTRL, ADDR pulse width fo	or each input	^t IPW	600	-	525	-	460	(-)	410	-	ps	
ACTIVATE to internal READ	or WRITE de-	^t RCD		•	See	Speed Bi	n Table fo	or RCD	•	•	ns	
PRECHARGE command per	riod	^t RP			Se	e Speed	in Tables	for ^t RP			ns	
ACTIVATE-to-PRECHARGE (command peri-	^t RAS			See	e Speed Bi	i Ables f	or ^t RAS			ns	13
ACTIVATE-to-ACTIVATE or period	REF command	^t RC			, Se	e Coeed B	in Tables	for ^t RC			ns	13
ACTIVATE-to-ACTIVATE co to different bank groups fo size		^t RRD_S (1/2KB)	MIN = of 4CK	greater or 5ns	MIN VE 4CK	greater or 4.2ns	I	greater or 3.7ns	MIN = 0	greater or 3.3ns	CK	1
ACTIVATE-to-ACTIVATE co to different bank groups fo size		^t RRD_S (1KB)	MIN = of 46K	greate. Ox 5ns	MIN = 9	greater or 4.2ns	1	greater or 3.7ns	MIN = 0	greater or 3.3ns	CK	1
ACTIVATE-to-ACTIVATE co to different bank groups fo size		tRRD_S (2KB)		greater or 6ns	MIN = 9	greater or 5.3ns	1	greater or 5.3ns	MIN = 9	greater or 5.3ns	CK	1
ACTIVATE-to-ACTIVATE conto same bank groups for 1,		^t RRD_1 (1/2)/91		greater or 6ns	MIN = 9	_	I	greater or 5.3ns	MIN = 0	greater or 4.9ns	CK	1
ACTIVATE-to-ACTIVATE colors for 11		RRL_L 1 KB)		greater or 6ns	MIN = 9		1	greater or 5.3ns	MIN = 0		CK	1
ACTIVATE-to-ACTIVATE colors same bank groups for 21		tRRD_L (2KB)	MIN = 9	greater or 7.5ns	MIN = 9	_	1	greater or 6.4ns	MIN = 0	greater or 6.4ns	CK	1
Four ACTIVATE windows for size	or 1/2KB page	^t FAW (1/2KB)	MIN = 9	_	MIN = 9		1	greater or 15ns	MIN = of 16CK	_	ns	

		DDR4 -	1600	DDR4	- 1866	DDR4	- 2133	DDR4	- 2400		
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Unit	Notes
Four ACTIVATE windows for 1KB page	^t FAW	MIN = gr	eater	MIN =	greater	MIN =	greater	MIN =	greater	ns	
size	(1KB)	of 20CK o	r 25ns	of 20CK	or 23ns	of 20Ck	Cor 21ns	of 20Ch	Cor 21ns		
Four ACTIVATE windows for 2KB page	^t FAW	MIN = gr	eater	MIN =	greater	MIN =	greater	MIN =	greater	ns	
size	(2KB)	of 28CK o	r 35ns	of 28CK	or 30ns	of 28Ck	Cor 30ns	of 28Ck	Cor 30ns		
WRITE recovery time	^t WR				MIN:	= 15ns				ns	6, 10, 1
	tWR ₂				MIN = 1	CK + ^t WR				CK	6, 11, 1
WRITE recovery time when CRC and DM are both enabled	^t WR_CRC_DM	MIN = ^t W greater o or 3.75	f (4CK	٨	IIN = ^t WR	LL + grea	ter of (5C)	or 3.75ns	5)	CK	7, 10, 1
	tWR_CRC_DM 2			IIM	N = 1CK +	tWR_CR	M			CK	7, 11, 1
Delay from start of internal WRITE transaction	tWTR_L			MIN	= greater	of	7. 9 ns			CK	6, 10, 1
to internal READ command – Same bank group	tWTR_L2				MIN = 1CI	+ twrr_	L			CK	6, 11, 1
Delay from start of internal WRITE transa- ction to internal READ command – Same bank group when CRC and DM are both	^t WTR_L_CRC_D M	MIN = ^t W greater o or 3.75	f (4CK	^	Allow type	_ S + grea	ter of (5CK	or 3.75ns	s)	CK	7, 10, 1
enabled	tWTR_L_CRC_D M ₂		•	MIN	= 1CK + ^t \	WTR_L_CF	RC_DM			CK	7, 11, 1
Delay from start of internal WRITE trans- action to internal READ command – Dif-	^t WTR_S		4	MIN	= greater	of (2CK or	2.5ns)			CK	6, 8, 9, 10, 1
ferent bank group	^t WTR_S ₂		11		MIN = 1CI	K + ^t WTR_	_S			CK	6, 8, 9, 11, 1
Delay from start of internal WRITE trans- action to internal READ command – Dif- ferent bank group when CRC and DM are	tWTR_S_CRC_D M	MIN virester of or 3.75			MIN = ^t W	R + greate	er of (5CK o	or 3.75ns)		CK	7, 8, 9, 10, 1
both enabled	tWTR_S_CR&_D			MIN :	= 1CK + ^t \	WTR_S_CF	RC_DM			CK	7, 8, 9, 11, 1
READ-to-PRECHARGE time	t Alba			MIN	= greater	of 4CK or	7.5ns			CK	1
CAS_n-to-CAS_n command delay to dif- ferent bank group	tCCD_S	4	-	4	-	4	-	4	-	CK	

Parameter CAS_n-to-CAS_n command delay to same bank group Auto precharge write recovery + precharge time MRS command cycle time MRS command cycle time in PDA mode MRS command cycle time in CAL mode MRS command update delay in PDA	tCCD_L tDAL (MIN) tMRD tMRD_PDA tMOD	Min = greater of 4CK or 6.25ns	-1600 Max - MIN	Min = greater of 4CK or 5.355ns = WR + RC	-1866 Max - DUNDUP ^t	Min MIN = greater of 4CK or 5.355ns	Max -	Min MIN = greater of 4CK or 5ns	-2400 Max -	Unit CK	Notes
CAS_n-to-CAS_n command delay to same bank group Auto precharge write recovery + precharge time MRS command cycle time MRS command cycle time in PDA mode MRS command cycle time in CAL mode	tCCD_L tDAL (MIN) tMRD tMRD_PDA	MIN = greater of 4CK or 6.25ns	MIN	MIN = greater of 4CK or 5.355ns = WR + RC	-	MIN = greater of 4CK or 5.355ns	-	MIN = greater of 4CK or 5ns		CK	
Auto precharge write recovery + pre- charge time MRS command cycle time MRS command cycle time in PDA mode MRS command cycle time in CAL mode	tDAL (MIN) tMRD tMRD_PDA	greater of 4CK or 6.25ns	MIN	greater of 4CK or 5.355ns = WR + RC		greater of 4CK or 5.355ns		greater of 4CK or 5ns	-		15
Auto precharge write recovery + pre- charge time MRS command cycle time MRS command cycle time in PDA mode MRS command cycle time in CAL mode	tMRD tMRD_PDA	of 4CK or 6.25ns		of 4CK or 5.355ns = WR + RC	DUNDUP ^t	of 4CK or 5.355ns	/G)· MAY -	of 4CK or 5ns		CV	
MRS command cycle time MRS command cycle time in PDA mode MRS command cycle time in CAL mode	tMRD tMRD_PDA	or 6.25ns		or 5.355ns = WR + RC	DUNDUP ^t	or 5.355ns	/G\· MAY -	or 5ns		CV	
MRS command cycle time MRS command cycle time in PDA mode MRS command cycle time in CAL mode	tMRD tMRD_PDA	MRS		= WR + RC	OUNDUP ^t		(G): MAY -	NI/A		CV	
MRS command cycle time MRS command cycle time in PDA mode MRS command cycle time in CAL mode	tMRD tMRD_PDA	1			OUNDUP t	RP/ ^t CK (AV	/G)· M	NI/A		CV	
MRS command cycle time MRS command cycle time in PDA mode MRS command cycle time in CAL mode	tMRD_PDA	1	Commar	d Timina			U), IVIA	= IN/A		CV	
MRS command cycle time in PDA mode	tMRD_PDA	1	Commar	d Timina				7			
MRS command cycle time in PDA mode MRS command cycle time in CAL mode	tMRD_PDA	8		ia riiiiiig							
MRS command cycle time in CAL mode			_	8	-	8		8	-	CK	
<u> </u>	^t MOD	1		MIN =	greater (of (16) CK,	ions)			CK	1
ARS command update delay in PDA					MIN = tM	CD + tCA				CK	
mis communica aparate acia, mi son	tMOD			MIN =	great	of 24nCK,	15ns)			CK	1
node						/,					
MRS command update delay	tMOD_PDA			-	MN	tMOD				CK	
MRS command update delay in CAL	tMOD_CAL				$M^{\dagger} = N^{\dagger}$	OD + ^t CAL	-			CK	
node) *						
MRS commandto DQS drive in preamble	tSDO				$MIN = {}^{t}N$	10D + 9ns					
raining			_								
		MPR	Commar	nd Timing						•	
Multipurpose register recovery time	tMPRR		<u>, , , , , , , , , , , , , , , , , , , </u>			= 1CK				CK	
Multipurpose register write recovery time	tWR_MPRR					D + AL + P	'L				
		CRC Ef	ror Repor	ting Timi	ng						
CRC error to ALERT_n latency	tCRC_ALER	\	13	3	13	3	13	3	13	ns	
CRC ALERT_n pulse width	tCRC_ALERT	6	10	6	10	6	10	6	10	CK	
	12	C	A Parity 1	Timing							
Parity latency	PL	4	-	4	-	4	-	5	-	CK	
Commands uncertain to be executed dur-	PAR_UN-	-	PL	-	PL	-	PL	-	PL	CK	
ng this time	KNOWN										
Delay from errant command to ALERT_	tPAR_ALERT_O	-	PL+	-	PL+	-	PL+	-	PL+	CK	
assertion	N	_	6ns		6ns		6ns		6ns	_	
Pulse width of ALERT_n signal when as- erted	^t PAR_ALERT_P W	48	96	56	112	64	128	72	128	CK	

			DDR4	-1600	DDR4	-1866	DDR4	- 2133	DDR4	- 2400		
Parameter		Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Unit	Notes
Time from alert asserted	until DES com-	tPAR_ALERT_RS	-	43	_	50	_	57	_	64	CK	
mands required in persis	tent CA parity	Р										
mode												
				CAL	Timing							
CS_n to command addre	ess latency	^t CAL	3	-	4	-	4	_	5	_	CK	
CS_n to command addre	ess latency in	^t CALg	N/A	-	N/A	-	N/A		N/A	-	CK	
gear-down mode												
				MPSN	l Timing							
Command path disable of MPSM entry	delay upopn	^t MPED			MIN =	^t MOD (N	IIN) + CP	PDED (MIN)			CK	1
Valid clock requirement a	after MPSM	^t CKMPE			MIN =	= tMOD (N	IIIN PSP	PDED (MIN)			CK	1
Valid clock requirement exit	before MPSM	^t CKMPX			•	MIN	- ^t SRX (MIN)			CK	1
Exit MPSM to commands	not requiring a	^t XMP			\mathcal{L}	tXS	5 (MIN)				CK	
Exit MPSM to commands	requiring a	tXMPDLL		1	MIN =	XMP (MIN) + ^t XSDL	L (MIN) CK	1		CK	1
CS setup time to CKE		tMPX_S		11		NIN = ^t IS (N	MIN) + ^t IF	H (MIN)			ns	
CS_n HIGH hold time to	CKE rising edge	tMPX_HH		—		MII	$N = {}^{t}XP$				ns	
CS_n LOW hold time to 0		tMPX_LH	12	tXMP-1	12	tXMP-1	12	tXMP-1	12	tXMP-1	ns	
	5 5			0ns		0ns		0ns		0ns		
			Co	nnectivit	y Test Tin	ning						
TEN pin HIGH to CS_n LC mode)W – Enter CT	^t CT_Enable	200	-	200	-	200	-	200	-	ns	
CS_n LOW and valid inpu	ut to valid output	tCl Valid	_	200	_	200	_	200	_	200	ns	
 CK_t, CK_c valid and CKE		tCTECT_Valid	10	_	10	-	10	_	10	_	ns	
goes HIGH		7 -										
	~		Calibrat	ion and \	REFDQ Tra	in Timing	ı	·				
ZQCL command: Long calibration time	POWER-UP and RESET operation	^t ZQinit	1024	-	1024	-	1024	-	1024	-	CK	
	Normal opera-	^t ZQoper	512	-	512	_	512	-	512	-	CK	

TABLE 81: ELECTR	ICAL CHARACTE	RISTICS AND A	С Тіміі	IG PAR	AMETER	s: DDR	4-1600	THROU	эн DDR	4-2400	(Сонтіі	NUED)
			DDR4	-1600	DDR4	-1866	DDR4	-2133	DDR4	4-2400		
Parameter		Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Unit	Notes
ZQCS command: Short cali	ibration time	^t ZQCS	128	-	128	-	128	-	128	-	CK	
The V _{REF} increment/decre	ment step time	V _{REF_time}		1	'	MIN =	150ns	'		1		
Enter V_{REFDQ} training mod write or V_{REFDQ} MRS comm		tVREFDQE				MIN =	: 150ns				ns	1
Exit V _{REFDQ} training mode WRITE command delay	to the first	tVREFDQX				MIN =	: 150ns	_\			ns	1
			Initializa	ation and	Reset Tim	ning						
Exit reset from CKE HIGH to mand	o a valid com-	^t XPR		٨	MIN = grea	iter of 5CK	or tRFCV	MIN) - 10i	ns		CK	1
RESET_L pulse low after po	ower stable	tPW_REST_S	0.1	-	0.1		0.1	-	0.1	-	μs	
RESET_L pulse low at power	er-up	tPW_REST_L	200	-	200	\	200	-	200	-	μs	
Begin power supply ramp plies stable	to power sup-	^t VDDPR			N	MN = M	MAX = 20	00			ms	
RESET_n LOW to power su	pplies stable	t _{RPS}			_ 〈	$\overline{MN} = 0;$	MAX = 0				ns	
RESET_n LOW to I/O and R	TT High-Z	^t IOZ		_	MN	► N/A; MA	AX = unde	fined			ns	
			ı	Refrest Ti	iming							
REFRESH-to-ACTIVATE		tRFC1		-//		MIN	= 260				ns	1, 12
or REFRESH command	4Gb	^t RFC2	•	1		MIN	= 160				ns	1, 12
period (all bank groups)		^t RFC4		1.		MIN	= 110				ns	1, 12
groups,		tRFC1				MIN:	= 350				ns	1, 12
	8Gb	^t RFC2				MIN:	= 260				ns	1, 12
		^t RFC4				MIN:	= 160				ns	1, 12
		tRFC1				MIN	= 550				ns	1, 12
	16Gb	NEC2				MIN	= 405				ns	1, 12
		NFC4				MIN	= 250				ns	1, 12
Average periodic refresh	$0^{\circ}\text{C} \leq \text{T}_{\text{C}} \leq 85^{\circ}\text{C}$	^t REFI			I	MIN = N/A	; MAX = 7.	8			μs	12
interval	85°C < T _C ≤ ∂5°C	^t REFI			I	MIN = N/A	; MAX = 3.	9			μs	12
			Se	lf Refresh	Timing							
Exit self refresh to commar		tXS				$MIN = {}^{t}R$	FC + 10ns				ns	1
ing a locked DLL SRX to co requiring a locked DLL in s		^t XS_ABORT				MIN = ^t RF	-C4 + 10ns	3				1
abort											ns	1

		DDR4	4-1600	DDR4	I-1866	DDR4	-2133	DDR4	-2400		
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Unit	Notes
Exit self refresh to ZQCL, ZQCS and MRS	tXS_FAST				MIN = ^t RF	C4 + 10ns	5				1
(CL, CWL, WR, RTP and gear-down)										ns	
Exit self refresh to commands requiring a locked DLL	^t XSDLL				MIN = ^t D	LLK (MIN)				CK	1
Minimum CKE low pulse width for self re- fresh entry to self refresh exit timing	^t CKESR			М	IN = ^t CKE ((MIN) + 1 <i>r</i>	CK			CK	1
Minimum CKE low pulse width for self re- fresh entry to self refresh exit timing when CA parity is enabled	^t CKESR_PAR			MIN	= ^t CKE (M	IN) + 1 <i>n</i> Cł	(+ PL	7		CK	1
Valid clocks after self refresh entry (SRE) or power-down entry (PDE)	^t CKSRE			MIN	l = greater	of (50X,)	9ns)			CK	1
Valid clock requirement after self refresh entry or power-down when CA parity is enabled	^t CKSRE_PAR			MIN =	greater of	56K 10r	is) + PL			CK	1
Valid clocks before self refresh exit (SRX) or power-down exit (PDX), or reset exit	^t CKSRX			M	= areater	of (5CK, 1	Ons)			CK	1
		Powe	er-Down T	iming							
Exit power-down with DLL on to any val- id command	^t XP		~	MIN	N = greatei	r of 4CK or	6ns			CK	1
Exit precharge power-down with DLL fro- zen to commands not requiring a locked DLL when CA Parity is enabled.	^t XP_PAR	,<		MIN =	(greater of	f 4CK or 6ı	ns) + PL			CK	1
CKE MIN pulse width	tCKE (MIN)			IIM	l = greate	r of 3CK or	5ns			CK	1
Command pass disable delay	^t CPDED		-	4	-	4	-	4	-	CK	
Power-down entry to power-down exit timing	t _{PD}			MIN =	tcke (MIN)); MAX = 9	× ^t REFI			CK	
Begin power-down period prior to CKE registered HIGH	100				WL -	- 1CK				CK	
Power-down entry period: ODT either synchronous or asynchronous	PDE	Gı	reater of ^t /	ANPD or ^t	RFC - REFR	RESH comr	mand to Cl	KE LOW ti	me	CK	
Power-down exit period: ODT either sylchronous or asynchronous	PDX				^t ANPD +	+ ^t XSDLL				CK	

		DDR4	-1600	DDR4	-1866	DDR4	-2133	DDR4	-2400		
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Unit	Notes
ACTIVATE command to power-down en-	^t ACTPDEN	1	_	1	-	2	-	2	-	CK	
try											
PRECHARGE/PRECHARGE ALL command to power-down entry	^t PRPDEN	1	-	1	_	2	_	2	_	CK	
REFRESH command to power-down entry	^t REFPDEN	1	-	1	-	2	-	2	-	CK	
MRS command to power-down entry	^t MRSPDEN				MIN = tN	IOD (MIN)			•	CK	1
READ/READ with auto precharge com- mand to power-down entry	^t RDPDEN				MIN = R	L + 4 + 1	7	7		CK	1
WRITE command to power-down entry (BL8OTF, BL8MRS, BC4OTF)	^t WRPDEN			MIN	= WL + 4 +	- tWR/tCl	(AVG			CK	1
WRITE command to power-down entry (BC4MRS)	^t WRPBC4DEN			MIN =	WL + 2 + t	WR/TCK(A	AVG) CK			CK	1
WRITE with auto precharge command to power-down entry (BL8OTF, BL8MRS,BC4OTF)	tWRAPDEN			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	MIN = WA	+ WR +	· 1			CK	1
WRITE with auto precharge command to power-down entry (BC4MRS)	^t WRAPBC4DEN				► WL + 2	+ WR + 1	CK 1			CK	1
			ep y	iming							
Direct ODT turn-on latency	DODTLon		7	WL	- 2 = CWL	+ AL + PL	2			CK	
Direct ODT turn-off latency	DODTLoff			WL	- 2 = CWL	+ AL + PL	2			CK	
R _{TT} dynamic change skew	^t ADC	0.3	0.7	0.3	0.7	0.3	0.7	0.3	0.7	CK	
Asynchronous R _{TT(NOM)} turn-on delay (DLL off)	^t AONAS		9	1	9	1	9	1	9	ns	
Asynchronous R _{TT(NOM)} turn-off delay (DLL off)	tAOFAS	1	9	1	9	1	9	1	9	ns	
ODT HIGH time with WRITE command	ODTHR 1 ^t CK	6	-	6	-	6	-	6	-	CK	
and BL8	ONTH8 2 ^t CK	7	-	7	-	7	-	7	-	1	
ODT HIGH time without WRITE command	ODTH4 1 ^t CK	4	-	4	-	4	-	4	-	CK	
or with WRITE command and BC4	ODTH4 2 ^t CK	5	-	5	-	5	-	5	-	1	
1		V	Vrite Leve	ling Timi	ng						
First DQS_t, DQS_c rising edge after wite leveling mode is programmed	^t WLMRD	40	-	40	_	40	_	40	_	CK	

Note

- Notes: 1. Maximum limit not applicable.
 - 2. ^tCCD_L and ^tDLLK should be programmed according to the value defined per operating frequency.
 - 3. Although unlimited row accesses to the same row is allowed within the refresh period, excessive row accesses to the same row over a long term can result in degraded opera-
 - 4. Data rate is less than or equal to 1333 Mb/s.
 - 5. Data rate is less than or equal to TBD.
 - 6. WRITE-to-READ when CRC and DM are both not enabled.
 - 7. WRITE-to-READ delay when CRC and DM are both enabled.
 - 8. The start of internal write transactions is defined as follows:
 - For BL8 (fixed by MRS and on-the-fly): rising clock edge four clock cycles after WL
 - For BC4 (on-the-fly): rising clock edge four clock cycles after WL
 - For BC4 (fixed by MRS): rising clock edge two clock g
 - 9. For these parameters, the device supports ^tnPARAM nCK RU{^tPARAM [ns]/^tCK(AVG) [ns]}, in clock cycles, assuming all input clock jitter's cations are satisfied.
 - 10. When operating in 1tCK WRITE preamble mode
 - 11. When operating in 2^tCK WRITE preamble mo
 - 12. When CA parity mode is selected and the ff mode is used, each REF command requires an additional "PL" added to tR sh time.
 - 13. DRAM devices should be evenly add d when being accessed. Disproportionate accesses to a particular row addres esult in reduction of the product lifetime and/or reduction in data retention abil
 - to ^tCK (AVG) MAX as stated in the Speed Bin tables. 14. Applicable from ^tCK (AVG) N
 - 15. JEDEC specfies a minim

Electrical Characteristics and AC Timing Parameters: 2666 Through 3200 Mbs

			DDR4	1-2666	DDR4	-2933	DDR4	-3200			
Parameter		Symbol	Min	Max	Min	Max	Min	Max		Unit	Notes
				Clock	Timing						
Clock period average (DI	LL off mode)	tCK (DLL_OFF)	8	20	8	20	8	20		ns	
Clock period average		^t CK (AVG, DLL_ON)	0.75	1.6	0.682	1.6	0.625	1.6		ns	14
High pulse width averag	е	^t CH (AVG)	0.48	0.52	0.48	0.52	0.48	0.53	3	CK	
Low pulse width average	9	^t CL (AVG)	0.48	0.52	0.48	0.52	0.48	0.5		Ck	
Clock period jitter	Total	^t JlTper_tot	-38	38	-34	34	1	31		ps	
	Deterministic	^t JlTper_dj	-19	19	-17	17	-16	16		ps	
	DLL locking	^t JITper,lck	-30	30	-27	27	25	25		ps	
Clock absolute period		^t CK (ABS)	MI	IN = ^t CK (A	AVG) MIN +		tot MAX	IAX = ^t CK	(AVG) MAX +	ps	
Clock absolute high puls (includes duty cycle jitte		^t CH (ABS)	0.45	-	0.45	(0.45	_		^t CK (AVG)	
Clock absolute low pulse (includes duty cycle jitte		^t CL (ABS)	0.45	-<		-	0.45	-		^t CK (AVG)	
Cycle-to-cycle jitter	Total	tJITcc _tot	7	75	-6	58	6	53		ps	
	Deterministic	tJlTcc _dj	3	38	-3	34	3	31		ps	
	DLL locking	†JITcc,lck	. 6		-6	58	5	50		ps	

			DDR4	l-2666	DDR4	1-2933	DDR4	1-3200		
Parameter		Symbol	Min	Max	Min	Max	Min	Max		
Cumulative error across	2 cycles	^t ERR2per	-55	55	-50	50	-46	46		
	3 cycles	tERR3per	-66	66	-59	59	-55	55		
	4 cycles	^t ERR4per	-73	73	-66	66	-61	61		
	5 cycles	tERR5per	-79	79	-71	71	-65	65		
	6 cycles	^t ERR6per	-83	83	-75	75	-69	69		
	7 cycles	tERR7per	-87	87	-79	79	-73	73		
	8 cycles	tERR8per	-91	91	-82	82	-75	75		
	9 cycles	tERR9per	-94	94	-85	85		78		
	10 cycles	tERR10per	-96	96	-87	87	-80	80		
	11 cycles	tERR11per	-99	99	-89		-82	82		
	12 cycles	tERR12per	-101	101	-91	91	-84	84		
	$n = 13, 14 \dots 49,$	tERR <i>n</i> per		tEI	RR <i>n</i> per N	N = (1 + 0	.68ln[<i>n</i>]) ×	tJITper M	IN	
	50 cycles			^t ER	Rnp MA	X = (1 + 0)	.68ln[<i>n</i>])×	t _t JITper M	AX	
			D	Q Input T	mi <u>lg</u>					
Data setup time to	Base (calibrated	^t DS				2 Input Red				
DQS_t, DQS_c	V _{REF})				(аррі	roximately)	
	Noncalibrated	tPDA_S		Y		minim	num of 0.5	IU		
	V _{REF}		. ~	7,						
Data hold time from DQS_t, DQS_c	Base (calibrated	^t DH		R		2 Input Red roximately				
DQ3_t, DQ3_t	V _{REF})	tPDA ₩	\ `		(аррі		num of 0.5)	
	V _{REF}	PDA_H				minim	ium oi 0.5	10		
DQ and DM minimum d		DIPW	0.58	_	0.58	_	0.58	T _		
for each input	ata paise wiatii		0.50		0.50		0.50			
	•		DQ Outpu	t Timing	DLL enal	bled)				
DQS_t, DQS_c to DQ ske	ew, per group, per	^t DQSQ	_	0.18	_	0.18	_	0.18		
access	, \ \ \									
DQ output hold time fro	om DQS_t, DQS_c	^t QH	0.74	-	0.74	-	0.74	-		
Data Valid Window per		^t DVW _d	0.64		0.64		0.64			
^t DQSQ each device's ou	tput per u									
Data Valid Window per	7 I 🔻 I	^t DVW _p	0.72	_	0.72	-	0.72	_		
^t QH - ^t DQSQ each device										
DQ Low-Z time from CK	t CK c	tLZDO	-340	140	-330	135	-320	130	I	1

TABLE 82: ELECTRICAL CHARACTER	ISTICS AND AC	TIMING P	ARAMET	ERS (Co	ONTINUE	D)		
		DDR4	-2666	DDR4	-2933	DDR4	-3200	
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Unit
DQ High-Z time from CK_t, CK_c	^t HZDQ	_	140	_	135	_	130	ps
		D	Q Strobe	Input Tim	ing			
DQS_t, DQS_c rising edge to CK_t, CK_c rising edge for 1 tCKpreamble	^t DQSS _{1ck}	-0.27	0.27	-0.27	0.27	-0.27	0.27	CK
DQS_t, DQS_c rising edge to CK_t, CK_c rising edge for 2 tCKpreamble	^t DQSS _{2ck}	-0.5	0.5	-0.5	0.5	-0.5	0.5	CK
DQS_t, DQS_c differential input low pulse width	^t DQSL	0.46	0.54	0.46	0.54	0.46	9.54	СК
DQS_t, DQS_c differential input high pulse width	^t DQSH	0.46	0.54	0.46	0.54		0.54	СК
DQS_t, DQS_c falling edge setup to CK_t, CK_c rising edge	^t DSS	0.18	-	0.18	1	0.18	-	СК
DQS_t, DQS_c falling edge hold from CK_t, CK_c rising edge	^t DSH	0.18	-		7,-	0.18	-	СК
DQS_t, DQS_c differential WRITE preamble	^t WPRE	0.9	7.	0.9	-	0.9	-	СК
DQS_t, DQS_c differential WRITE postamble	tWPST	0.33	Z	0.33	_	0.33	_	СК
		DQS Strob	e Output	Timing (C	LL enabl	ed)		
DQS_t, DQS_c rising edge output access time from rising CK_t, CK_c	^t DQSCK	70	170	-165	165	-160	160	ps
DQS_t, DQS_c rising edge output var- iance window per DRAM	^t DQ\$CRi	-	270	-	265	-	260	ps
DQS_t, DQS_c differential output high time	V.	0.40	_	0.40	_	0.40	_	CK
DQS_t, DQS_c differential output low time	^t QSL	0.40	-	0.40	-	0.40	_	CK
DQS_t, DQS_c Low-Z time (RL - 1)	^t LZDQS	-340	140	-330	130	-320	130	ps
DQS_t, DQS_c High-Z time (RL + BL/2)	^t HZDQS	_	140	_	135	_	130	ps
DQS_t, DQS_c differential READ pream- ble	^t RPRE	0.9	-	0.9	-	0.9	_	CK

			DDR4	-2666	DDR4	-2933	DDR4	l-3200		
Parameter		Symbol	Min	Max	Min	Max	Min	Max	Unit	Notes
			Comm	nand and	Address	liming				
DLL locking time		^t DLLK	854	_	940	_	1024	_	CK	2, 4
CMD, ADDR setup time	Base	tIS	55	-	48	_	40	-	ps	
to CK_t, CK_c Base referenced to $V_{IH(AC)}$ and $V_{IL(AC)}$ levels	V _{REFCA}	^t IS _{VREF}	145	-	138	-	130	-	ps	
CMD, ADDR hold time	Base	^t IH	80	_	73	_	65	- •	ps	
to CK_t, CK_c Base ref- erenced to V _{IH(DC)} and _{VIL(DC)} levels	V _{REFCA}	^t IH _{VREF}	145	-	138	-	130	7	ps	
CTRL, ADDR pulse width f	or each input	^t IPW	385	-	365	_	250		ps	
ACTIVATE to internal REAl	D or WRITE de-	^t RCD		'	See	Speed Bi	in Tables fo	or ^t RCD	ns	
PRECHARGE command pe	eriod	^t RP			Se	e Speen S	in Tables 1	for ^t RP	ns	
ACTIVATE-to-PRECHARGE	command peri-	^t RAS			_{<	Speed B	in Tables f	or ^t RAS	ns	13
ACTIVATE-to-ACTIVATE or period	REF command	^t RC			O	e Speed B	Bin Tables	for ^t RC	ns	13
ACTIVATE-to-ACTIVATE co to different bank groups f size	•	tRRD_S (1/2KB)	MIN = q	· •	MIN = 9		1	greater or 3.0ns	CK	1
ACTIVATE-to-ACTIVATE co to different bank groups f size		tRRD_S (1KB)	of CK	greater or 3.0ns	MIN = 9	-		greater or 3.0ns	CK	1
ACTIVATE-to-ACTIVATE co to different bank groups f size		tRRD_S (2KB)	MIN = Q of 4CK o	greater or 5.3ns	MIN = 9	-	1	greater or 5.3ns	СК	1
ACTIVATE-to-ACTIVATE co		1/2KB)	MIN = g	_	MIN = 0	-	1	greater or 4.9ns	CK	1
ACTIVATE-to-ACTIVATE co	' /	tRRD_L (1KB)	MIN = q	_	MIN = 9	,		greater or 4.9ns	CK	1
ACTIVATE-to-ACTIVATE co		tRRD_L (2KB)	MIN = g	_	MIN = 9	-		greater or 6.4ns	СК	1

		DDR4	-2666	DDR	1-2933	DDR4	l-3200		
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Unit	Notes
Four ACTIVATE windows for 1/2KB page size	^t FAW (1/2KB)	MIN = q of 16CK	,		greater (or 12ns	of 16	greater SCK or .9ns	ns	
Four ACTIVATE windows for 1KB page size	^t FAW (1KB)	MIN = g	•	1	greater Cor 23ns	I	greater Cor 21ns	ns	
Four ACTIVATE windows for 2KB page size	^t FAW (2KB)	MIN = 0	•	1	greater Cor 30ns	I	greater (or 30ns	ns	
WRITE recovery time	^t WR				MIN	N = 15ns	7	ns	5, 10, 1
	tWR ₂					1CK + ^t Wl	O	CK	5, 11, 1
WRITE recovery time when CRC and DM are both enabled	tWR_CRC_DM			MIN =	^t WR + grea	ater of (5	K 6.2.3.75ns)	СК	6, 10, 1
WRITE recovery time when CRC and DM are both enabled	^t WR_CRC_DM ₂			٨	IN = 1CK	VR CR	C_DM	CK	6, 11, 1
Delay from start of internal WRITE trans-	tWTR_L			М	IN = Treate	er of 4CK o	or 7.5ns	CK	5, 10, 1
action to internal READ command – Same bank group	tWTR_L ₂				AIN ≥ 10	CK + ^t WTF	R_L	СК	5, 11, 1
Delay from start of internal WRITE trans- action to internal READ command – Same	^t WTR_L_CRC_D M		.<	MV = tV	/TR_L + gr	eater of (5	5CK or 3.75ns)	CK	6, 10, 1
bank group when CRC and DM are both enabled	tWTR_L_CRC_D M ₂		4	MII	N = 1CK +	tWTR_L_C	CRC_DM	CK	6, 10, 1
Delay from start of internal WRITE trans- action to internal READ command – Dif-	WTR_S			MI	N = greate	r of (2CK c	or 2.5ns)	CK	5, 7, 8, 10, 1
ferent bank group	tWTR_S ₂				MIN = 10	CK + ^t WTF	R_S	CK	5, 7, 8, 11, 1
Delay from start of internal WRITE trans- action to internal READ command – Dif-	tWTR_S_GRG_D			MIN = ^t V	VTR_S + gr	eater of (5	5CK or 3.75ns)	CK	6, 7, 8, 10, 1
ferent bank group when CRC and DM are both enabled	tWTLS CRC_D			MII	N = 1CK +	tWTR_S_C	CRC_DM	CK	6, 7, 8, 11, 1
READ-to-PRECHARGE time	^t RTP			М	IN = greate	er of 4CK c	or 7.5ns	CK	1
CAS_n-to-CAS_n command delay to different bank group	tCCD_S	4	-	4	_	4	-	CK	

TABLE 82: ELECTRICAL CHARACT	ERISTICS AND A	C TIMIN	IG PAR	AMETER	s (Con	TINUED)					
		DDR4	-1600	DDR4	-1866	DDR4	-2133	DDR4	I-2400		
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Unit	Notes
CAS_n-to-CAS_n command delay to same	tCCD_L	MIN =	-	MIN =	-	MIN =	-			CK	
bank group		greater		greater		greater					
		of 4CK		of 4CK		of 4CK					
		or 5ns		or 5ns		or 5ns					
Auto precharge write recovery + pre- charge time	^t DAL (MIN)		MIN	= WR + RC	DUNDUP	RP/ ^t CK (A\	/G); MAX =	= N/A		CK	
		M	RS Comm	nand Timi	ng		_				
MRS command cycle time	^t MRD	9	-	10	-	10				CK	
MRS command cycle time in PDA mode	tMRD_PDA			MIN :	greater	of (16nCK	1014				1
MRS command cycle time in CAL mode	^t MRD_CAL				MIN = ^t M	OD + CA	J T			CK	
MRS command update delay in PDA mode	^t MOD			MIN :	= greater	of /24nCk,	15ns)			CK	1
MRS command update delay	tMOD_PDA				MN =	MOD				CK	
MRS command update delay in CAL mode	tMOD_CAL				MY=VM	OD + ^t CAL	-			СК	
MRS commandto DQS drive in preamble training	^t SDO			N	$\overline{MIN} = {}^{t}N$	MOD + 9ns					
		MI	PR Corum	nanu Timi	ng						
Multipurpose register recovery time	^t MPRR				MIN =	= 1nCK				СК	
Multipurpose register write recovery time	t WR_MPRR	•	\mathcal{T}	, N	IN = tMC	D + AL + F	PL				
		GRC	Error Rep	orting Ti							
CRC error to ALERT_n latency	^t CRC_ALERT	, (3)	13	3	13	3	13			ns	
CRC ALERT_n pulse width	tCRC_ALERT_P		10	6	10	6	10			CK	
	10		CA Parit	y Timing		<u> </u>				<u> </u>	
Parity latency	The state of the s	6	-	8	_	8	_			CK	
Commands uncertain to be executed during this time	P.R.UN- NOWN	-	PL	-	PL	-	PL			CK	
Delay from errant command to ALERT_n	PAR_ALERT_O	-	PL+	-	PL+	_	PL+			СК	
assertion	N		бns		6ns		бns				
Pulse width of ALERT_n signal when as- serted	^t PAR_ALERT_P W	80	160	88	176	96	192			СК	

			DDR4	-2666	DDR4	-2933	DDR4	-3200			
Parameter		Symbol	Min	Max	Min	Max	Min	Max		Unit	Notes
Time from alert asserted	until DES com-	tPAR_ALERT_RS	-	71	-	78	-	85		CK	
mands required in persis	tent CA parity	Р									
mode											
				CAL	Timing						
CS_n to command addre	ss latency	^t CAL	5	-	6	-	6	-		CK	
CS_n to command addre	ss latency in	^t CALg	6	_	8	-	8			CK	
gear-down mode	•										
				MPSN	Timing						
Command path disable o	lelay upopn	^t MPED			MIN =	t MOD (N	IIN) +⁴C	DED MIN)		CK	1
MPSM entry	,										
Valid clock requirement a	after MPSM	^t CKMPE			MIN =	tMOD (N	IIN) + CP	DED (MIN)		CK	1
entry						7	>				
Valid clock requirement l	pefore MPSM	^t CKMPX				MIN + C	- ^t SRX (I	MIN)		CK	1
exit						10.					
Exit MPSM to commands	not requiring a	^t XMP			_	tχς	(MIN)			CK	
locked DLL					\bigcirc	•					
Exit MPSM to commands	requiring a	^t XMPDLL			MIN= 1	XMP (MIN) + ^t XSDL	L (MIN) CK	1	CK	1
locked DLL				\\							
CS setup time to CKE		^t MPX_S	•	1	N	IIN = ^t IS (N	MIN) + ^t IH	(MIN)		ns	
CS_n HIGH hold time to 0	CKE rising edge	tMPX_HH				MII	$N = {}^{t}XP$			ns	
CS_n LOW hold time to C	KE rising edge	tMPX_LH	12	tXMP-1	12	^t XMP-1	12	tXMP-1		ns	
_	3 3			0ns		0ns		0ns			
			/ Co	nnectivit	y Test Tin	ning					
TEN pin HIGH to CS_n LO	W – Enter CT	tCT_Enalle	200	_	200	_	200	_		ns	
mode											
CS_n LOW and valid inpu	ıt to valid output	tCT_Yalid	-	200	-	200	-	200		ns	
CK t, CK c valid and CKE	HIGH after TEN	^t C ECT Valid	10	_	10	-	10	_		ns	
goes HIGH	_	11, 1 = 1								-	
			Calibrat	ion and V	REFDO Tra	in Timing					
ZQCL command: Long	POWER-Wang	^t ZOinit	1024	_	1024	_	1024			CK	
calibration time	RESET operation										
	Normal opera-	^t ZQoper	512	_	512	_	512	_		CK	
	tiont										

			DDR4	-2666	DDR4	-2933	DDR4	1-3200		
Parameter		Symbol	Min	Max	Min	Max	Min	Max	Unit	Notes
ZQCS command: Short cal	ibration time	†ZQCS	128	-	128	-	128	-	CK	
The V _{REF} increment/decre	ment step time	V _{REF_time}			1	MIN =	150ns			
Enter V _{REFDQ} training mod write or V _{REFDQ} MRS comn		^t VREFDQE				MIN =	150ns		ns	1
Exit V _{REFDQ} training mode WRITE command delay	to the first	^t VREFDQX				MIN =	150ns		ns	1
			Initializa	ation and	Reset Tin	ning				
Exit reset from CKE HIGH to mand	o a valid com-	^t XPR		Λ	MIN = grea	iter of 5CK	or ^t RFC (I	MIN) - TONS	СК	1
RESET_L pulse low after po	ower stable	tPW_REST_S	0.1	-	0.1	-	3 .1		μs	
RESET_L pulse low at power	er-up	tPW_REST_L	200	_	200		200	-	μs	
Begin power supply ramp plies stable	to power sup-	^t VDDPR			ı	$N = N/\lambda$	XX = 20	00	ms	
RESET_n LOW to power su	ipplies stable	t _{RPS}				MIA 0;	MAX = 0		ns	
RESET_n LOW to I/O and R	R _{TT} High-Z	^t IOZ			MUV	=₩A; MA	X = unde	fined	ns	
			I	Refresh Ti	inling	•				
REFRESH-to-ACTIVATE		tRFC1				MIN :	= 260		ns	1, 12
or REFRESH command	4Gb	^t RFC2		-//		MIN :	= 160		ns	1, 12
period (all bank groups)		^t RFC4	•	1		MIN :	= 110		ns	1, 12
gioups)		tRFC1		1.		MIN :	= 350		ns	1, 12
	8Gb	^t RFC2	$\langle \cdot \rangle$			MIN :	= 260		ns	1, 12
		^t RFC4				MIN :	= 160		ns	1, 12
		tRFC1				MIN :	= 550		ns	1, 12
	16Gb	tRF02				MIN :	= 405		ns	1, 12
		NFC4				MIN :	= 250		ns	1, 12
Average periodic refresh	0°C ≤ T _C ≤ 85°C	NSFI				MIN = N/A	; MAX = 7.	.8	μs	12
interval	85°C < T _C ≤ 95°C	^t REFI				MIN = N/A	; MAX = 3.	.9	μs	12
			Se	lf Refresh	Timing					
Exit self refresh to comma		^t XS				MIN = ^t RI	FC + 10ns		ns	1
ing a locked DLL SRX to co requiring a locked DLL in s		^t XS_ABORT				MIN = ^t RF	C4 + 10ns	5		
abort									ns	1

		DDR4-2666	DDR4	-2933	DDR	4-3200			
Parameter	Symbol	Min Max	Min	Max	Min	Max		Unit	Notes
Exit self refresh to ZQCL, ZQCS and MRS (CL, CWL, WR, RTP and gear-down)	^t XS_FAST			MIN = ^t RF	C4 + 10n	S		ns	1
Exit self refresh to commands requiring a locked DLL	tXSDLL			MIN = ^t D	LLK (MIN)		CK	1
Minimum CKE low pulse width for self re- fresh entry to self refresh exit timing	^t CKESR		MI	N = ^t CKE	(MIN) + 1	nCK		CK	1
Minimum CKE low pulse width for self re- fresh entry to self refresh exit timing when CA parity is enabled	^t CKESR_par		MIN	= ^t CKE (M	IN) + 1 <i>n</i> C	K + PL	7	СК	1
Valid clocks after self refresh entry (SRE) or power-down entry (PDE)	^t CKSRE		MIN	l = greater	of (5CK,	Ons)		CK	1
Valid clock requirement after self refresh entry or power-down when CA parity is enabled	^t CKSRE_par		MIN =	greater of	(5CR, 10	ns) + PL		CK	1
Valid clocks before self refresh exit (SRX) or power-down exit (PDX), or reset exit	^t CKSRX		MIN	= Poler	of (5CK,	10ns)		CK	1
		Power-Down	Timing						
Exit power-down with DLL on to any valid command	^t XP			l = greate	of 4CK o	r 6ns		CK	1
Exit precharge power-down with DLL fro- zen to commands not requiring a locked DLL when CA Parity is enabled.	^t XP_PAR	11/2	MIN =	(greater o	f 4CK or 6	ins) + PL		CK	1
CKE MIN pulse width	^t CKE (MIN)		MIN	l = greate	of 3CK o	r 5ns		CK	1
Command pass disable delay	^t CPDED •	5 -	5	_	6	-		CK	
Power-down entry to power-down exit timing	^t PD C	>	MIN = 1	CKE (MIN)	; MAX = 9	9 × ^t REFI		CK	
Begin power-down period prior to CKE registered HIGH	TAPPA .			WL -	1CK			CK	
Power-down entry period: ODT either synchronous or asynchronous	PDE	Greater of ^t	ANPD or ^t l	RFC - REFR	ESH com	mand to C	CKE LOW time	CK	
Power-down exit period: ODT either synchronous or asynchronous	PDX			^t ANPD +	- ^t XSDLL			CK	

		DDR4	-2666	DDR4	-2933	DDR4	-3200		
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Unit	Notes
ACTIVATE command to power-down en-	^t ACTPDEN	2	-	2	_	2	_	CK	
try									
PRECHARGE/PRECHARGE ALL command to power-down entry	^t PRPDEN	2	_	2	_	2	_	CK	
REFRESH command to power-down entry	^t REFPDEN	2	_	2	_	2	_	CK	
MRS command to power-down entry	^t MRSPDEN		1		MIN = tN	IOD (MIN)		CK	1
READ/READ with auto precharge com- mand to power-down entry	^t RDPDEN				MIN = R	1/2		CK	1
WRITE command to power-down entry (BL8OTF, BL8MRS, BC4OTF)	^t WRPDEN			MIN :	= WL+	WR/ ^t CK	(AVG)	CK	1
WRITE command to power-down entry (BC4MRS)	^t WRPBC4DEN			MIN	WL + 2 + 1	WR/†CK(A	NVG) CK	CK	1
WRITE with auto precharge command to power-down entry (BL8OTF, BL8MRS,BC4OTF)	^t WRAPDEN		~		∕IIN = WL ⊣	- 4 + WR +	1	CK	1
WRITE with auto precharge command to power-down entry (BC4MRS)	^t WRAPBC4DEN	~		MIN	I = WL + 2	+ WR + 1	CK 1	CK	1
		1	ODT	Timing					
Direct ODT turn-on latency	DODTLon			WL	- 2 = CWL	+ AL + PL	2	CK	
Direct ODT turn-off latency	DODTLeff)		WL	- 2 = CWL	+ AL + PL	2	CK	1
R _{TT} dynamic change skew	tABC	0.3	0.7	0.3	0.7	0.3	0.7	CK	1
Asynchronous R _{TT(NOM)} turn-on delay (DLL off)	taona).	1	9	1	9	1	9	ns	
Asynchronous R _{TT(NOM)} turn-off delay (DLL off)	AOFAS	1	9	1	9	1	9	ns	
ODT HIGH time with WRITE command	ODTH8 1 ^t CK	6	-	6	-	6	-	CK	
and BL8	ODTH8 2 ^t CK	7	-	7	-	7	-		
ODT HIGH time without WRITE command	ODTH4 1 ^t CK	4		4		4		CK	
or with WRITE command and BC4	ODTH4 2 ^t CK	5	-	5	_	5	_		
	<u> </u>	V	Vrite Leve	eling Timi	ng				<u> </u>
First DQS_t, DQS_c rising edge after write leveling mode is programmed	^t WLMRD	40	-	40	-	40	-	CK	

		DDR4	-2666	DDR4	-2933	DDR4	-3200	
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Uni
DQS_t, DQS_c delay after write leveling mode is programmed	^t WLDQSEN	25	-	25	-	25	-	Ck
Write leveling setup from rising CK_t, CK_c crossing to rising DQS_t, DQS_c crossing	^t WLS	0.13	-	0.13	-	0.13	-	Cł
Write leveling hold from rising DQS_t, DQS_c crossing to rising CK_t, CK_c crossing	tWLH	0.13	-	0.13	-	0.13	-	Cł
Write leveling output delay	tWLO	0	9.5	0	9.5	0	9.5	n:
Write leveling output error	tWLOE	0	2	0	2	0	2	n:
			Gear-Dov	vn Timing	j	1		
Exit reset from CKE HIGH to a valid MRS gear-down	tXPR_GEAR	^t X	PR	^t X	PR C	1	PR	CI
CKE HIGH assert to gear-down enable time)	^t XS_GEAR	t)	KS	t>	Z/	ty	(S	Cł
MRS command to sync pulse time	tSYNC_GEAR	tMOD	+ 4CK	^t MD	+ 4CK	tMOD	+ 4CK	CI
Sync pulse to first valid command	tCMD_GEAR	^t M	OD		OD	^t M(OD	CI
Gear-down setup time	^t GEAR_setup	2CK		24K	_	2CK	_	С
Gear-down hold time	tGEAR_hold	2CK		2CK	_	2CK	-	CI

Notes:

- 1. Maximum limit not applicable.
- tCCD_L and tDLLK should be programmed cording to the value defined per operating frequency.
- 3. Data rate is less than or equal to 1333 VM/s
- 4. Data rate is less than or equal to 100.
- 5. WRITE-to-READ when CRC and DM are both not enabled.
- 6. WRITE-to-READ delay when Cand DM are both enabled.
- 7. The start of internal write transactions is defined as follows:
 - For BL8 (fixed by Marand on-the-fly): rising clock edge four clock cycles after WL
 - For BC4 (on-the-W) sising clock edge four clock cycles after WL
 - For BC4 (fixed by MRS): rising clock edge two clock cycles after WL
- 8. For these parameters, the device supports ${}^{t}nPARAM[nCK] = RU\{{}^{t}PARAM[ns]/{}^{t}CK(AVG)[ns]\}$, in clock cycles, assuming all input clock jitter specifications are satisfied.
- Although unlimited row accesses to the same row is allowed within the refresh period, excessive row accesses to the same row over a long term can result in degraded operation.
- 10. When operating in 1^tCK WRITE preamble mode.
- 11. When operating in 2^tCK WRITE preamble mode.
- 12. When CA parity mode is selected and the DLLoff mode is used, each REF command requires an additional "PL" added to ^tRFC refresh time.
- DRAM devices should be evenly addressed when being accessed. Disproportionate accesses to a particular row address may result in reduction of the product lifetime and/or reduction in data retention ability.
- 14. Applicable from ^tCK (AVG) MIN to ^tCK (AVG) MAX as stated in the Speed Bin tables.
- 15. JEDEC specfies a minimum of five clocks.
- 16. The maximum read postamble is bound by ^tDQSCK(MIN) plus ^tQSH(MIN) on the left side and ^tHZ(DQS)MAX on the right side.
- 17. The reference level of DQ output signal is specified with a midpoint as a widest part of output signal eye, which should be approximately $0.7 \times VDDQ$ as a center level of the static single-ended output peak-to-peak swing with a driver impedance of 34 ohms and an effective test load of 50 ohms to $V_{TT} = V_{DDQ}$.

RESET and Initialization Procedure

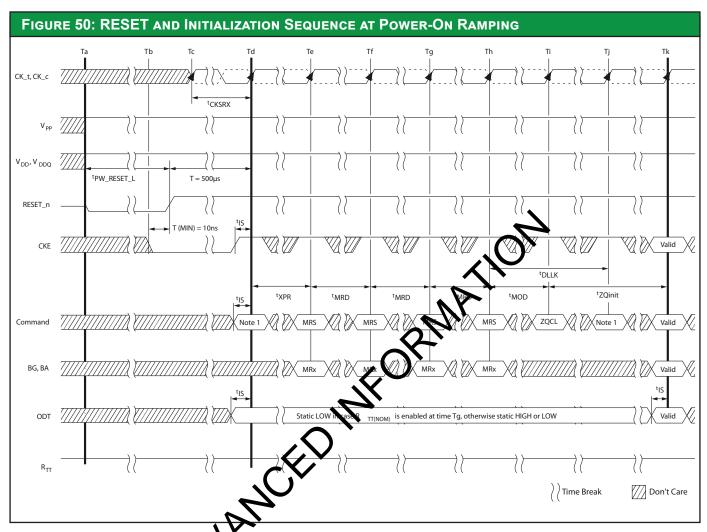
Power-Up and Initialization Sequence

The following sequence is required for power-up and initialization:

1. Apply power (RESET_n and TEN must be maintained below $0.2 \times V_{DD}$ while supplies ramp up; all other inputs may be undefined). When supplies have ramped to a valid stable level, RESET_n must be maintainedbelow $0.2 \times V_{DD}$ for a minimum of ${}^{t}PW_{RESET_L}$ and TEN must be maintained below $0.2 \times V_{DD}$ for a minimum of 700µs. CKE is pulled LOW anytime before RESET_n is de-asserted (minimum time of 10ns). The power voltage ramp time between 300mV to $V_{DD,min}$ must be no greater than 200ms, and during the ramp, V_{DD} must be greater than or equal to V_{DDQ} and V_{DDQ} and V_{DDQ} must ramp at the same time or before V_{DD} , and V_{PP} must be equal to or higher than V_{DD} at all times. After V_{DD} has ramped and reached the stable level, the initialization sequence must be started within 64ms.

During power-up, either of the following conditions may exist and must be met:

- Condition A:
 - Apply V_{PP} without any slope reversal before or at the same time as V_{DD} and V_{DDQ}.
 - V_{DD} and V_{DDQ} are driven from a single-power converter output and and V_{DDQ} without any slope reversal before or at the same time as V_{TT} and V_{REFCA} .
 - The voltage levels on all balls other than V_{DD} , V_{DDQ} , V_{SS} , and V_{SS} are used be less than or equal to V_{DDQ} and V_{DD} on one side and must be greater than or equal to V_{SS} and V_{SS} on the other side.
 - V_{TT} is limited to 0.76V MAX when the power ramp is complete.
 - V_{REFCA} tracks V_{DD}/2.
- Condition B:
 - Apply V_{PP} without any slope reversal before or givine same time as V_{DD} .
 - Apply V_{DD} without any slope reversal before wat the same time as V_{DDO}.
 - Apply V_{DDO} without any slope reversal before of at the same time as V_{TT} and V_{REFCA}.
 - The voltage levels on all pins other that V_D , V_{DD} , V_{DDQ} , V_{SS} , and V_{SSQ} must be less than or equal to V_{DDQ} and V_{DD} on one side and must be larger than or equal to V_{SSQ} and V_{SS} on the other side.
- 2. After RESET_n is de-asserted, wait for another 500µs until CKE becomes active. During this time, the device will start internal state initialization, this will be done independently of external clocks. A reasonable attempt was made in the design to power to with the following default MR settings: gear-down mode (MR3 A[3]): 0 = 1/2 rate; per-DRAM addressable; (MR3 A[4]): 0 = disable; maximum power-down (MR4 A[1]): 0 = disable; CS to command/address latency (MR4 A[8:6]): 000 = disable; CA parity latency mode (MR5 A[2:0]): 000 = disable. However, it should be assumed that at power up the MR settings are undefined and should be programmed as shown below.
- 3. Clocks (CK_t, CK_c) Let to be started and stabilized for at least 10ns or 5 tCK (whichever is larger) before CKE goes active. Because CKE is a synchronous signal, the corresponding setup time to clock (tIS) must be met. Also, a DESELECT command must be registered (with tIS setup time to clock) at clock edge Td. After the CKE is registered HIGH after RESET, CKE needs to be continuously registered HIGH until the initialization sequence is finished, including expiration of tDLLK and tZQINIT.
- 4. The device keeps its ODT in High-Z state as long as RESET_n is asserted. Further, the SDRAM keeps its ODT in High-Z state after RESET_n de-assertion until CKE is registered HIGH. The ODT input signal may be in an undefined state until tIS before CKE is registered HIGH. When CKE is registered HIGH, the ODT input signal may be statically held either LOW or HIGH. If R_{TT(NOM)} is to be enabled in MR1, the ODT input signal must be statically held LOW. In all cases, the ODT input signal remains static until the power-up initialization sequence is finished, including the expiration of ^tDLLK and ^tZQ_{INIT}.


- 5. After CKE is registered HIGH, wait a minimum of RESET CKE EXIT time, t XPR, before issuing the first MRS command to load mode register (t XPR = MAX (t XS; 5 × t CK).
- 6. Issue MRS command to load MR3 with all application settings, wait ^tMRD.
- 7. Issue MRS command to load MR6 with all application settings, wait ^tMRD.
- 8. Issue MRS command to load MR5 with all application settings, wait ^tMRD.
- 9. Issue MRS command to load MR4 with all application settings, wait ^tMRD.
- 10. Issue MRS command to load MR2 with all application settings, wait ^tMRD.
- 11. Issue MRS command to load MR1 with all application settings, wait ^tMRD.
- 12. Issue MRS command to load MR0 with all application settings, wait ^tMOD.
- 13. Issue a ZQCL command to start ZQ calibration.
- 14. Wait for ^tDLLK and ^tZQINIT to complete.
- 15. The device will be ready for normal operation.

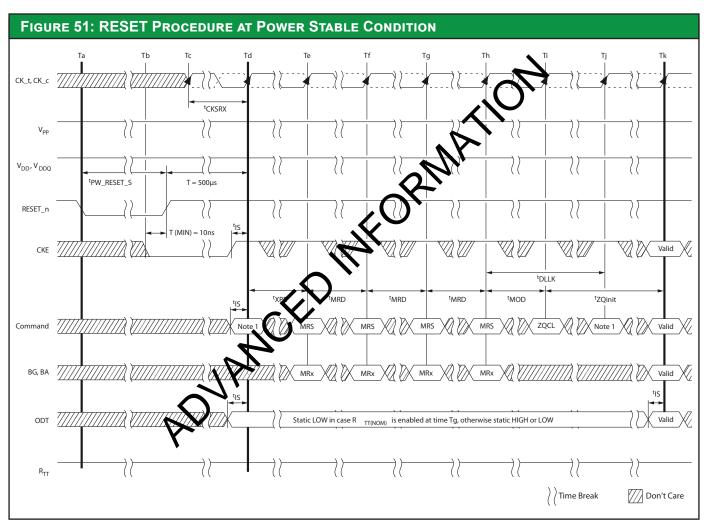
A stable valid V_{DD} level is a set DC level (0 Hz to 20 MHz) and must be no less than $V_{DD,min}$ and no greater than $V_{DD,max}$. If the set DC level is altered anytime after initialization, the DLL reset and calibrations must be performed again after the new set DC level is stable. AC noise of ± 60 mV (greater than 20 MHz) is allowed on VDD provided the noise doesn't alter V_{DD} to less than $V_{DD,min}$ or greater than $V_{DD,max}$.

A stable valid V_{DDQ} level is a set DC level (0 Hz to 20 MHz) and must be to less than $V_{DDQ,min}$ and no greater than $V_{DDQ,max}$. If the set DC level is altered anytime after initialization, the SQL reset and calibrations must be performed again after the new set DC level is stable. AC noise of ± 60 to (greater than 20 MHz) is allowed on V_{DDQ} provided the noise doesn't alter V_{DDQ} to less than $V_{DDQ,min}$ or greater than $V_{DDQ,max}$.

A stable valid V_{PP} level is a set DC level (0 Hz to 20 MHz) and proof be no less than $V_{PP,min}$ and no greater than $V_{PP,max}$. If the set DC level is altered anytime after initialization, the DLL reset and calibrations must be performed again after the new set DC level is stable. AC noise of $v_{PP,max}$ (greater than 20 MHz) is allowed on V_{PP} provided the noise doesn't alter V_{PP} to less than $V_{PP,min}$ or greater than $V_{PP,max}$.

Notes: 1. From time point Td until Tk, a DES command must be applied between MRS and ZQCL commands.

IRS commands must be issued to all mode registers that have defined settings. In general, there is no specific sequence for setting the MRS locations (except for dependent or co-related features, such as ENABLE DLL in MR1 prior to RESET DLL in MR0, for example).


4. TEN is not shown; however, it is assumed to be held LOW.

The following sequence is required for RESET at no power interruption initialization:

- 1. Assert RESET_n below $0.2 \times V_{DD}$ any time reset is needed (all other inputs may be undefined). RESET must be maintained for a minimum of 100ns. CKE is pulled LOW before RESET_n is de-asserted (minimum time 10ns).
- 2. Follow Steps 2 to 7 in the Reset and Initialization Sequence at Power-on Ramping procedure.

When the reset sequence is complete, all counters except the refresh counters have been reset and the device is ready for normal operation.

Notes:

- 1. From time point Td until Tk, a DES command must be applied between MRS and ZQCL commands.
- 2. MRS commands must be issued to all mode registers that have defined settings.
- In general, there is no specific sequence for setting the MRS locations (except for dependent or co-related features, such as ENABLE DLL in MR1 prior to RESET DLL in MR0, for example).
- 4. TEN is not shown; however, it is assumed to be held LOW.

Programming Mode Registers

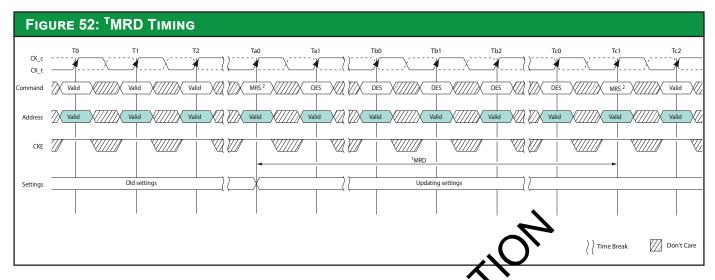
Uncontrolled Power-Down Sequence

In the event of an uncontrolled ramping down of V_{PP} supply, V_{PP} is allowed to be less than V_{DD} provided the following conditions are met:

- Condition A: V_{PP} and V_{DD}/V_{DDO} are ramping down (as part of turning off) from normal operating levels.
- Condition B: The amount that V_{PP} may be less than V_{DD}/V_{DDO} is less than or equal to 500mV.
- Condition C: The time V_{PP} may be less than V_{DD} is ≤10ms per occurrence with a total accumulated time in this state ≤100ms.
- Condition D: The time V_{PP} may be less than 2.0V and above V_{SS} while turning off is ≤15ms per occurrence with a total accumulated time in this state ≤150ms.

Programming Mode Registers

For application flexibility, certain functions, features, and modes are programmable in seven mode registers (MR*n*) provided by the device as user defined variables that must be programmed via a MODE REGISTER SET (MRS) command. Because the default values of the mode registers are not defined; contents of mode registers must be fully initialized and/or re-initialized; that is, they must be written after power-up and/or reset for proper operation. The contents of the mode registers can be altered by re-executing the MRS command during normal operation. When programming the mode registers even if the user chooses to modify only a sub-set of the MRS fields, all address fields within the accessed mode register must be redefined when the MRS command is issued. MRS and DLL RESET commands do not affect array contents, which means these commands can be executed any time after power-up without affecting the array contents.


The MRS command cycle time, ^tMRD, is required to complete the WRITE operation to the mode register and is the minimum time required between the two MRS commands shown in the ^tMRD Timing figure.

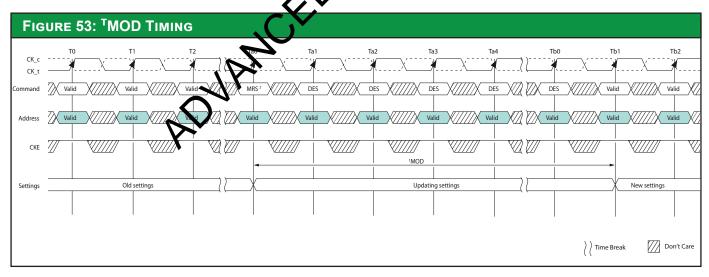
Some of the mode register settings affect a ldress/command/control input functionality. In these cases, the next MRS command can be allowed when the function being updated by the current MRS command is completed. These MRS commands don't apply tMRS timing to the next MRS command; however, the input cases have unique MR setting procedures, so refer to introduce the function descriptions:

- · Gear-down mode
- · Per-DRAM addressability
- Maximum power saving mode
- CS to command/address latency
- CA parity latency mode
- V_{REFDO} training value
- V_{REFDQ} training mode
- V_{REFDO} training range

Some mode register settings may not be supported because they are not required by certain speed bins.

s: 1. This timing diagram depicts CA parity mode "disabled case.

2. tMRD applies to all MRS commands with the following exceptions:


Gear-down mode CA parity mode

CAL mode

Per-DRAM addressability mode

 V_{REFDQ} training value, V_{REFDQ} training mode, and V_{REFDQ} training range

The MRS command to non MPS command delay, ^tMOD, is required for the DRAM to update features, except DLNRSET. ^tMOD is the minimum time required from an MRS command to a nonMPS command, excluding DES, as shown in the ^tMOD Timing figure.

Notes: 1. This timing diagram depicts CA parity mode "disabled" case.

2. tMOD applies to all MRS commands with the following exceptions:

DLL enable, Gear-down mode

 V_{REFDQ} training value, internal V_{REF} training monitor, V_{REFDQ} training mode, and V_{REFDQ} training range

Maximum power savings mode, Per-DRAM addressability mode, and CA parity mode

The mode register contents can be changed using the same command and timing requirements during normal operation as long as the device is in idle state; that is, all banks are in the precharged state with tRP satisfied, all data bursts are completed, and CKE is HIGH prior to writing into the mode register. If the $R_{TT(NOM)}$ feature is enabled in the mode register prior to and/or after an MRS command, the ODT signal must continuously be registered LOW, ensuring R_{TT} is in an off state prior to the MRS command. The ODT signal may be registered HIGH after t MOD has expired. If the $R_{TT(NOM)}$ feature is disabled in the mode register prior to and after an MRS command, the ODT signal can be registered either LOW or HIGH before, during, and after the MRS command. The mode registers are divided into various fields depending on functionality and modes.

In some mode register setting cases, function updating takes longer than ^tMOD. This type of MRS does not apply ^tMOD timing to the next valid command, excluding DES. These MRS command input cases have unique MR setting procedures, so refer to individual function descriptions.

Mode register 0 (MR0) controls various device operating modes as shown in the following register definition table. Not all settings listed may be available on a die; only settings required for speed bin support are available. MR0 is written by issuing the MRS command while controlling the states of the BGx, BAX and IAx address pins. The mapping of address pins during the MRS command is shown in the following MR0 has been definition table.

Mode Register 0

TABLE	83: <i>F</i>	\DDF	RESS	Pin	MAF	PIN	3															
Address bus	BG1	BG0	BA1	BA0	A17	RAS _n	CAS _n	WE _n	A13	A12	A11	A10	A9	A8	A7	A6	A5	A4	А3	A2	A1	A0
Mode register	21	20	19	18	17	-	-	_	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Note: 1. RAS_n, CAS_n, and WE_n must be LOW during MODE REGISTER SET command.

TABLE 84	: MR0 Register Definition
Mode Register	Description
21	RFU 0 = Must be programmed to 0 0 = Must be programmed to 0
20:18	0 = Must be programmed to 0 MR select 000 = MR0 001 = MR1 010 = MR2 011 = MR3 100 = MR4 101 = MR5 110 = MR6 111 = DNU
17	N/A on 4Gb and 8Gb, RFU 0 = Must be programmed to 0 1 = Reserved
13,11:9	WR (WRITE recovery)/RTP (NEAD-to-PRECHARGE) 0000 = 10 / 5 clocks 0001 = 12 / 6 clocks 0010 = 14 / 7 clocks 0011 = 16 / 8 / Nocks 0100 = 18 / 9 clocks 0101 = 20 / 10 clocks 0110 = 24 / 12 clocks 0111 = 22 / 11 clocks 1000 = 26 / 13 clocks 1001 through 1111 = Reserved

Mode	
egister	Description
8	DLL reset
	0 = No
	1 = Yes
7	Test mode (TM) – Manufacturer use only
	0 = Normal operating mode, must be programmed to 0
., 6:4, 2	CAS latency (CL) – Delay in clock cycles from the internal READ command to first data-out
	$00000 = 9 \text{ clocks}^1$
	00001 = 10 clocks
	$00010 = 11 \text{ clocks}^1$
	00011 = 12 clocks
	$00100 = 13 \text{ clocks}^1$
	00101 = 14 clocks
	$00110 = 15 \text{ clocks}^1$
	00111 = 16 clocks
	01000 = 18 clocks
	01001 = 20 clocks
	01010 = 22 clocks
	01011 = 24 clocks
	01100 = 23 clocks ¹
	01101 = 17 clocks ¹
	01110 = 19 clocks ¹
	01111 = 21 clocks ¹
	00001 = 10 clocks 00010 = 11 clocks ¹ 00011 = 12 clocks 00100 = 13 clocks ¹ 00110 = 15 clocks ¹ 00111 = 16 clocks 01000 = 18 clocks 01001 = 20 clocks 01010 = 22 clocks 01010 = 23 clocks ¹ 01101 = 17 clocks ¹ 01110 = 19 clocks ¹ 01111 = 21 clocks ¹ 10000 = 25 clocks (3DS use only)
	10001 = 26 clocks
	01111 = 21 clocks ¹ 10000 = 25 clocks (3DS use only) 10001 = 26 clocks 10010 = 27 clocks (3DS use only) 10011 = 28 clocks
	10011 = 28 clocks
	10100 = 29 clocks ¹
	10101 = 30 clocks
	10110 = 31 clocks ¹
	10111 = 32 clocks
3	Burst type (BT) Data burst ordering within a READ or WRITE burst access
	0 = Nibble sequential
	1 = Interleave
1:0	Burst length (BL) – Data burst size associated with each read or write access
	00 = BL8 (fixed)
	01 = BC4 or BL8 (on-the-fly)
	10 = BC4 (fixed)
	11 = Reserved

Note: 1. Not allowed when 1/4 rate gear-down mode is enabled.

Burst Length, Type, and Order

Accesses within a given burst may be programmed to sequential or interleaved order. The ordering of accesses within a burst is determined by the burst length, burst type, and the starting column address as shown in the following table. Burst length options include fixed BC4, fixed BL8, and on-the-fly (OTF), which allows BC4 or BL8 to be selec-ted coincidentally with the registration of a READ or WRITE command via A12/BC_n.

Mode Register 0

Note 1 applies to the entire table

Burst Length	READ/ WRITE	Starting Column Address (A[2, 1, 0])	Burst Type = Sequential (Decimal)	Burst Type = Interleaved (Decimal)	Notes
BC4	READ	0 0 0	1, 2, 3, 0, T, T, T, T	0, 1, 2, 3, T, T, T, T	2, 3
		0 0 1	1, 2, 3, 0, T, T, T, T	1, 0, 3, 2, T, T, T, T	2, 3
		0 1 0	2, 3, 0, 1, T, T, T, T	2, 3, 0, 1, T, T, T, T	2, 3
		0 1 1	3, 0, 1, 2, T, T, T, T	3, 2, 1, 4, 11 , T	2, 3
		1 0 0	4, 5, 6, 7, T, T, T, T	4, 5 (6, 7, T, T, T, T	2, 3
		1 0 1	5, 6, 7, 4, T, T, T, T	5, 4, 7, 6, T, T, T, T	2, 3
		1 1 0	6, 7, 4, 5, T, T, T, T	6, ₹ , 4, 5, T, T, T, T	2, 3
		111	7, 4, 5, 6, T, T, T, T	7, 6, 5, 4, T, T, T, T	2, 3
	WRITE	0, V, V	0, 1, 2, 3, X, X, X, X	0, 1, 2, 3, X, X, X, X	2, 3
		1, V, V,	4, 5, 6, 7, X, X, X, X	4, 5, 6, 7, X, X, X, X	2, 3
BL8	READ	000	0, 1, 2, 3, 4, 5, 6, 7	0, 1, 2, 3, 4, 5, 6, 7	
		0 0 1	1, 2, 3, 0, 5, 6, 7, 4	1, 0, 3, 2, 5, 4, 7, 6	
		010	2, 3, 0, 1, 6, 7, 4, 5	2, 3, 0, 1, 6, 7, 4, 5	
		011	3.0.1, 2, 7, 4, 5, 6	3, 2, 1, 0, 7, 6, 5, 4	
		100	4, 5, 6, 7, 0, 1, 2, 3	4, 5, 6, 7, 0, 1, 2, 3	
		101	5, 6, 7, 4, 1, 2, 3, 0	5, 4, 7, 6, 1, 0, 3, 2	
		110	6, 7, 4, 5, 2, 3, 0, 1	6, 7, 4, 5, 2, 3, 0, 1	
		111	7, 4, 5, 6, 3, 0, 1, 2	7, 6, 5, 4, 3, 2, 1, 0	
	WRITE	V, V A V	0, 1, 2, 3, 4, 5, 6, 7	0, 1, 2, 3, 4, 5, 6, 7	3

When setting burst length to BC4 (fixed) in MR0, the internal WRITE operation starts two clock cycles earlier than for the BL8 mode, meaning the starting point for ^tWR and ^tWTR will be pulled in by two clocks. When setting burst length to OTF in MR0, the internal WRITE operation starts at the same time as a BL8 (even if BC4 was selected during column time using A12/BC4_n) meaning that if the OTF MR0 setting is used, the starting point for ^tWR and ^tWTR will not be pulled in by two clocks as described in the BC4 (fixed) case.

- 3. T = Output driver for data and strobes are in High-Z.
 - V = Valid logic level (0 or 1), but respective buffer input ignores level on input pins.
 - X = "Don't Care."

CAS Latency

The CAS latency (CL) setting is defined in the MR0 Register Definition table. CAS latency is the delay, in clock cycles, between the internal READ command and the availability of the first bit of output data. The device does not support half-clock latencies. The overall read latency (RL) is defined as additive latency (AL) + CAS latency (CL): RL = AL + CL.

Test Mode

The normal operating mode is selected by MR0[7] and all other bits set to the desired values shown in the MR0 Register Definition table. Programming MR0[7] to a value of 1 places the device into a DRAM manufacturer-defined test mode to be used only by the manufacturer, not by the end user. No operations or functionality is specified if MR0[7]

= 1.

Write Recovery (WR) / READ-to-PRECHARGE

The programmed write recovery (WR) value is used for the auto precharge feature along with tRP to determine ^tDAL. WR for auto precharge (MIN) in clock cycles is calculated by dividing ^tWR (in rs.) by ^tCK (in ns) and rounding up to the next integer: WR (MIN) cycles = roundup (tWR[ns]/^tCK[ns]). The WR value must be programmed to be equal to or larger than ^tWR (MIN). When both DM and write CRC are enabled in the mode register, the device calculates CRC before sending the write data into the array; ^tWR values will of ange when enabled. If there is a CRC error, the device blocks the WRITE operation and discards the data.

Internal READ-to-PRECHARGE (RTP) command delay for auto precharge (MIN) in clock cycles is calculated by dividing tRTP (in ns) by t CK (in ns) and rounding up to the next integer MTP (MIN) cycles = roundup (tRTP[ns]/ t CK[ns]). The RTP value in the mode register must be programmed to be equal to or larger than RTP (MIN). The programmed RTP value is used with t RP to determine the ACT timing to the same bank.

DLL RESET

The DLL reset bit is self-clearing, meaning that the turns to the value of 0 after the DLL RESET function has been issued. After the DLL is enabled, a subsequent DLL RESET should be applied. Any time the DLL RESET function is used, ¹DLLK must be met before functions equiring the DLL can be used, such as READ commands or synchronous ODT operations, for example,)

Mode register 1 (MR1) controls various device operating modes as shown in the following register definition table. Not all settings listed may be available on a die; only settings required for speed bin support are available. MR1 is written by issuing the MR1 command while controlling the states of the BGx, BAx, and Ax address pins. The mapping of address pins during the MRS command is shown in the following MR1 Register Definition table.

Mode Register 1

Table 86: Address Pin Mapping																						
Address bus	BG1	BG0	BA1	BA0	A17	RAS _n	CAS _n	WE _n	A13	A12	A11	A10	A9	A8	A7	A6	A5	A4	А3	A2	A1	A0
Mode register	21	20	19	18	17	-	ı	-	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Note: 1. RAS_n, CAS_n, and WE_n must be LOW during MODE REGISTER SET command.

Mode Register	Description						
21	RFU						
	0 = Must be programmed to 0						
	1 = Reserved						
20:18	MR select						
	000 = MR0						
	001 = MR1						
	MR select 000 = MR0 001 = MR1 010 = MR2 011 = MR3 100 = MR4 101 = MR5 110 = MR6						
	011 = MR3						
	100 = MR4						
	101 = MR5						
	110 = MR6						
	111 = DNU						
17	N/A on 4Gb and 8Gb, RFU						
	0 = Must be programmed to 0						
	1 = Reserved						
13	RFU						
	0 = Must be programmed to						
	1 = Reserved						
12	Data output disable (Ooff) – Output buffer disable						
	0 = Enabled (no made operation)						
	1 = Disabled (both ODI and RTT_{TT})						
11	Termination data strobe (TDQS) – Additional termination pins (x8 configuration only)						
	0 = TDQS disabled						
	1 = TDQS enabled						

Mode Register	Description
10, 9, 8	Nominal ODT (R _{TT(NOM)} – Data bus termination setting 000 = R _{TT(NOM)} disabled 001 = RZQ/4 (60 ohm) 010 = RZQ/2 (120 ohm) 011 = RZQ/6 (40 ohm) 100 = RZQ/1 (240 ohm) 101 = RZQ/5 (48 ohm) 110 = RZQ/3 (80 ohm) 111 = RZQ/7 (34 ohm)
7	Write leveling (WL) – Write leveling mode 0 = Disabled (normal operation)
6, 5	1 = Enabled (enter WL mode) RFU 0 = Must be programmed to 0 1 = Reserved Additive latency (AL) - Command additive latency setting
4, 3	Additive latency (AL) – Command additive latency setting $00 = 0 \text{ (AL disabled)}$ $01 = \text{CL} - 1^{1}$ $10 = \text{CL} - 2$ $11 = \text{Reserved}$
2, 1	Output driver impedance (ODI) – Output driver impedance setting 00 = RZQ/7 (34 ohm) 01 = RZQ/5 (48 ohm) 10 = Reserved (Although not JEDEC-demedand not tested, this setting will provide RZQ/6 or 40 ohm) 11 = Reserved
0	DLL enable – DLL enable feature 0 = DLL disabled 1 = DLL enabled (normal uperation)

Note: (1.) ot allowed when 1/4 rate gear-down mode is enabled.

DLL Enable/DLL Disable

The DLL must be enabled for normal operation and is required during power-up initialization and upon returning to normal operation after having the DLL disabled. During normal operation (DLL enabled with MR1[0]) the DLL is automatically disabled when entering the SELF REFRESH operation and is automatically re-enabled upon exit of the SELF REFRESH operation. Any time the DLL is enabled and subsequently reset, [†]DLLK clock cycles must occur before a READ or SYNCHRONOUS ODT command can be issued to allow time for the internal clock to be synchronized with the external clock. Failing to wait for synchronization to occur may result in a violation of the [†]DQSCK, [†]AON, or [†]AOF parameters.

During ${}^{t}DLLK$, CKE must continuously be registered HIGH. The device does not require DLL for any WRITE operation, except when $R_{TT(WR)}$ is enabled and the DLL is required for proper ODT operation.

The direct ODT feature is not supported during DLL off mode. The ODT resistors must be disabled by continuously registering the ODT pin LOW and/or by programming the RTT(NOM) bits MR1[9,6,2] = 000 via an MRS command during DLL off mode.

The dynamic ODT feature is not supported in DLL off mode; to disable dynamic ODT externally, use the MRS command to set RTT(WR), MR2[10:9] = 00

Output Driver Impedance Control

The output driver impedance of the device is selected by MR1[2,1], as shown in the MR1 Register Definition table.

ODT R_{TT(NOM)} Values

The device is capable of providing three different termination values: $R_{TT(Static)}$, $R_{TT(NOM)}$, and $R_{TT(WR)}$. The nominal termination value, $R_{TT(NOM)}$, is programmed in MR1. A separate value, $R_{TT(WR)}$, thay be programmed in MR2 to enable a unique R_{TT} value when ODT is enabled during WRITE operations. The $R_{TT(WR)}$ value can be applied during WRITE commands even when $R_{TT(NOM)}$ is disabled. A third R_{TT} value $R_{TR(Static)}$, is programed in MR5. $R_{TT(Static)}$ provides a termination value when the ODT signal is LOW.

Additive Latency

The ADDITIVE LATENCY (AL) operation is supported to make contrained and data buses efficient for sustainable bandwidths in the device. In this operation, the device allows a READ or WRITE command (either with or without auto precharge) to be issued immediately after the ACTIVACE command. The command is held for the time of AL before it is issued inside the device. READ latency (RL) is controlled by the sum of the AL and CAS latency (CL) register settings. WRITE latency (WL) is controlled by the sum of the AL and CAS WRITE latency (CWL) register settings.

TABLE 88: ADDITIVE LATENCY (AL) SZTTIVAS									
A4	АЗ	AL							
0	0	0 (AL disabled)							
0	1	CL - 1							
1	0	CL - 2							
1	1	Reserved							

Note: 1. AL has a value of CL - 1 or CL - 2 based on the CL values programmed in the MR0 register.

Write Leveling

For better signal integrity, fly-by topology is frequently used for the commands, addresses, control signals, and clocks. Fly-by topology benefits from a reduced number of stubs and their lengths, but it causes flight-time skew between clock and strobe at every DRAM on the DIMM. This makes it difficult for the controller to maintain ^tDQSS, ^tDSS, and ^tDSH specifications. Therefore, the device supports a write leveling feature that allows the controller to compensate for skew.

Output Disable

The device outputs may be enabled/disabled by MR1[12] as shown in the MR1 Register Definition table. When MR1[12] is enabled (MR1[12] = 1) all output pins (such as DQ and DQS) are disconnected from the device, which removes any loading of the output drivers. For example, this feature may be useful when measuring module power. For normal operation, set MR1[12] to 0.

Mode Register 2

Mode register 2 (MR2) controls various device operating modes as shown in the following register definition table. Not all settings listed may be available on a die; only settings required for speed bin support are available. MR2 is written by issuing the MRS command while controlling the states of the BGx, BAx, and Ax address pins. The mapping of address pins during the MRS command is shown in the following MR2 Register Definition table.

TABLE	89: /	\DDF	RESS	Pin	MAF	PIN	G															
Address bus	BG1	BG0	BA1	BA0	A17	RAS _n	CAS _n	WE _n	A13	A12	A11	A10	A9	A8	A7	A6	A5	A4	А3	A2	A1	A0
Mode register	21	20	19	18	17	-	-	-	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Note: 1. RAS_n, CAS_n, and WE_n must be LOW during MODE AS USTER SET command

84 - J -		
Mode Register	Description	N_{k}
21	RFU 2	
	0 = Must be programmed to 0	
	1 = Reserved	
20:18	MR select	
	000 = MR0	
	001 = MR1	
	010 = MR2	
	011 = MR3	
	100 = MR4 101 = MR5 110 = MR6 111 = DNU	
	101 = MR5	
	110 = MR6	
	111 = DNU	
17	N/A on 4Gb and 8Gb-RFV	
	0 = Must be programmed to 0	
	1 = Reserved	
13	TRR mode	
	0 = Disabled	
	1 = Enabled	
12	WRITE data bus CRC	
	0 = Disabled	
	1 = Enabled	

Mode	
Register	Description
11:9	Dynamic ODT (R _{TT(WR)}) – Data bus termination setting during WRITEs
	$000 = R_{TT(WR)}$ disabled (WRITE does not affect R_{TT} value)
	001 = RZQ/2 (120 ohm)
	010 = RZQ/1 (240 ohm)
	011 = High-Z
	100 = RZQ/3 (80 ohm)
	101 = Reserved
	110 = Reserved
	111 = Reserved
7:6	Low-power auto self refresh (LPASR) – Mode summary
	00 = Manual mode - Normal operating temperature range (TC: 0°C-85°C)
	01 = Manual mode - Reduced operating temperature range (TC: 0°C-45°C)
	10 = Manual mode - Extended operating temperature range (T_C : 0°C-95°C)
	11 = ASR mode - Automatically switching among all modes
5:3	CAS WRITE latency (CWL) – Delay in clock cycles from the internal WRITE command to first data-in
	1 ^t CK WRITE preamble
	$000 = 9 (DDR4-1600)^{1}$
	001 = 10 (DDR4-1866)
	001 = 10 (DDR4-1866) 010 = 11 (DDR4-2133/1600) ¹ 011 = 12 (DDR4-2400/1866) 100 = 14 (DDR4-2666/2133)
	011 = 12 (DDR4-2400/1866)
	100 = 14 (DDR4-2666/2133)
	101 = 16 (DDR4-2933,3200/2400)
	110 = 18 (DDR4-2666)
	111 = 20 (DDR4-2933, 3200)
	CAS WRITE latency (CWL) – Delay in clock cycles from the internal WRITE command to first data-in
	2 ^t CK WRITE preamble
	000 = N/A
	001 = N/A
	010 = N/A
	011 = N/A
	100 = 14 (DDR4-2400)
	101 = 16 (DDR4-26\ 6/2400)
	110 = 18 (DDR4-2933, 3200/2666)
	111 = 20 (DDR4-2933, 3200)
8, 2	TRR mode - BGn control
	00 = BG0
	01 = BG1
	10 = BG2
	11 = BG3
1:0	TRR mode - BAn control
	00 = BA0
	01 = BA1
	10 = BA2
	11 = BA3

Note: 1. Not allowed when 1/4 rate gear-down mode is enabled.

ST9D4512M40DBG0

CAS WRITE Latency

CAS WRITE latency (CWL) is defined by MR2[5:3] as shown in the MR2 Register Definition table. CWL is the delay, in clock cycles, between the internal WRITE command and the availability of the first bit of input data. The device does not support any half-clock latencies. The overall WRITE latency (WL) is defined as additive latency (AL) + parity latency (PL) + CAS WRITE latency (CWL): WL = AL +PL + CWL.

Low-Power Auto Self Refresh

Low-power auto self refresh (LPASR) is supported in the device. Applications requiring SELF REFRESH operation over different temperature ranges can use this feature to optimize the IDD6 current for a given temperature range as specified in the MR2 Register Definition table.

Dynamic ODT

In certain applications and to further enhance signal integrity on the data was, it is desirable to change the termination strength of the device without issuing an MRS command. This may be done by configuring the dynamic ODT ($R_{TT(WR)}$) settings in MR2[11:9]. In write leveling mode, only $R_{TT(WR)}$ is available.

Write Cyclic Redundancy Check Data Bus

The write cyclic redundancy check (CRC) data bus feature during writes has been added to the device. When enabled via the mode register, the data transfer size gas from the normal 8-bit (BL8) frame to a larger 10-bit UI frame, and the extra two UIs are used for the CRC information.

Target Row Refresh Mode

For the device, rows can be accessed climited number of times within a certain time period before adjacent rows require refresh. The maximum activate count (MAC) is the maximum number of activates that a single row can sustain within a time interval of equal to or less than the maximum activate window (†MAW) before the adjacent rows need to be refreshed to galaliess of how the activates are distributed over †MAW. The row receiving the excessive activates is the target row (TR n); the two adjacent rows to be refreshed are the victim rows.

When the MAC limit is reached on TRn, either the device must receive (roundup of ^tMAW / ^tREFI) REFRESH commands (REF) before another row activate is issued, or it needs to be placed into targeted row refresh (TRR) mode. The TRR mode will refresh the rows adjacent to the TRn that encountered the MAC limit. There could be one or two target rows in a bank associated to one victim row. The cumulative value of the activates from two target rows on a victim row should not exceed the MAC value as well. When the temperature controlled refresh (TCR) mode is enabled, ^tMAW should be adjusted depending on the TCR range as shown in the following table.

Using TRR mode is not required, and in some cases has been rendered inoperable, as the device automatically performs TRR Mode in the background.

Mode Register 3

Mode register 3 (MR3) controls various device operating modes as shown in the following register definition table. Not all settings listed may be available on a die; only settings required for speed bin support are available. MR3 is written by issuing the MRS command while controlling the states of the BGx, BAx, and Ax address pins. The mapping of address pins during the MRS command is shown in the following MR3 Register Definition table.

TABLE	91: <i>F</i>	A DDF	RESS	Pin	MAF	PIN	3															
Address bus	BG1	BG0	BA1	BA0	A17	RAS _n	CAS _n	WE _n	A13	A12	A11	A10	A9	A8	A7	A6	A5	A4	А3	A2	A1	A0
Mode register	21	20	19	18	17	-	-	-	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Note: 1. RAS_n, CAS_n, and WE_n must be LOW during MODE ASSISTER SET command.

TABLE 92	2: MR3 REGISTER DEFINITION
Mode Register	Description
21	RFU 0 = Must be programmed to 0 1 = Reserved
20:18	MR select 000 = MR0 001 = MR1 010 = MR2 011 = MR3 100 = MR4 101 = MR5 110 = MR6 111 = DNU
17	N/A on 4Gb and 8Gb, RFV 0 = Must be programmed to 0 1 = Reserved
13	RFU 0 = Must be programmed to 0 1 = Reserved
12:11	Multipurpose register (MPR) – Read format 00 = Serial 01 = Parallel 10 = Staggered 11 = Reserved
10:9	WRITE CMD latency when CRC/DM enabled 00 = 4CK (DDR4-1600) 01 = 5CK (DDR4-1866/2133/2400) 10 = 6CK (DDR4-2666/2933/3200) 11 = Reserved

Mode Register	Description
8:6	Fine granularity refresh mode
	000 = Normal mode (fixed 1x)
	001 = Fixed 2x
	010 = Fixed 4x
	011 = Reserved
	100 = Reserved
	101 = On-the-fly 1x/2x
	110 = On-the-fly 1x/4x
	111 = Reserved
5	Temperature sensor status
	0 = Disabled
	1 = Enabled
4	1 = Enabled Per-DRAM addressability 0 = Normal operation (disabled) 1 = Enable
	0 = Normal operation (disabled)
	1 = Enable
3	Gear-down mode – Ratio of internal clock to external data rate
	0 = [1:1]; (1/2 rate data)
	1 = [2:1]; (1/4 rate data)
2	Multipurpose register (MPR) access
	0 = Normal operation
	1 = Data flow from MPR
1:0	MPR page select
	00 = Page 0
	01 = Page 1
	10 = Page 2
	11 = Page 3 (restricted for DRAN an aufacturer use only)

Multipurpose Register

The multipurpose register (MNX) is used for several features:

- Readout of the contents of the MR*n* registers
- WRITE and READ system patterns used for data bus calibration
- Readout of the error frame when the command address parity feature is enabled

To enable MPR, issue an MRS command to MR3[2] = 1. MR3[12:11] define the format of read data from the MPR. Prior to issuing the MRS command, all banks must be in the idle state (all banks precharged and ^tRP met). After MPR is enabled, any subsequent RD or RDA commands will be redirected to a specific mode register.

The mode register location is specified with the READ command using address bits. The MR is split into upper and lower halves to align with a burst length limitation of 8. Power-down mode, SELF REFRESH, and any other nonRD/RDA or nonWR/WRA commands are not allowed during MPR mode. The RESET function is supported during MPR mode, which requires device re-initialization.

WRITE Command Latency When CRC/DM is Enabled

The WRITE command latency (WCL) must be set when both write CRC and DM are enabled for write CRC persistent mode. This provides the extra time required when completing a WRITE burst when write CRC and DM are enabled.

Fine Granularity Refresh Mode

This mode had been added to DDR4 to help combat the performance penalty due to refresh lockout at high densities. Shortening ^tRFC and increasing cycle time allows more accesses to the chip and can produce higher bandwidth.

Temperature Sensor Status

This mode directs the DRAM to update the temperature sensor status at MPR Page 2, MPR0 [4,3]. The temperature sensor setting should be updated within 32ms; when an MPR read of the temperature sensor status bits occurs, the temperature sensor status should be no older than 32ms.

Per-DRAM Addressability

This mode allows commands to be masked on a per device basis providing any device in a rank (devices sharing the same command and address signals) to be programmed individually. As an example, this feature can be used to program different ODT or VREF values on DRAM devices within a given rank.

Gear-Down Mode

The device defaults in 1/2 rate (1N) clock mode and uses a low frequency MRS command followed by a sync pulse to align the proper clock edge for operation the control lines CS_n, CKE, and ODT when in 1/4 rate (2N) mode. For operation in 1/2 rate mode, no MRS command or sync pulse is required.

Mode Register 4

Mode register 4 (MR4) controls various device operating modes as shown in the following register definition table. Not all settings listed may be available on a die; only settings required for speed bin support are available. MR4 is written by issuing the MRS command while controlling the states of the BGx, BAx, and Ax address pins. The mapping of address pins during the MRS command is shown in the following MR4 Register Definition table.

TABLE	93: /	ADDF	RESS	Pin	MAF	PIN	G															
Address bus	BG1	BG0	BA1	BA0	A17	RAS _n	CAS _n	WE _n		A12	A11	A10	A9	A8	A7	A6	A5	A4	А3	A2	A1	A0
Mode register	21	20	19	18	17	-	-	-	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Note: 1. RAS_n, CAS_n, and WE_n must be LOW during MODE RECISTER SET (MRS) command.

	: MR4 Register Definition
Mode egister	Description
21	RFU
	0 = Must be programmed to 0 1 = Reserved MR select 000 = MR0 001 = MR1 010 = MR2 011 = MR3 100 = MR4 101 = MR5 110 = MR6 111 = DNU
20:18	MR select
	000 = MR0
	001 = MR1
	010 = MR2
	011 = MR3
	100 = MR4
	101 = MR5
	110 = MR6
	111 = DNU
17	N/A on 4Gb and 8Gb, RFV
	0 = Must be programmed to 0
	1 = Reserved
13	Post Package Rypair (PPR mode)
	0 = Disabled
	1 = Enabled
12	WRITE preamble setting
	$0 = 1^{t} \text{CK toggle}^{1}$
	$1 = 2^t$ CK toggle
11	READ preamble setting
	$0 = 1^{t} CK toggle^{1}$
	$1 = 2^{t}$ CK toggle (When operating in 2^{t} CK WRITE preamble mode, CWL must be programmed to a value at
	least 1 clock greater than the lowest CWL setting supported in the applicable ^t CK range.)
10	READ preamble training
	0 = Disabled
	1 = Enabled

Mode Register	Description
9	Self refresh abort mode 0 = Disabled 1 = Enabled
8:6	CMD (CAL) address latency 000 = 0 clocks (disabled) 001 = 3 clocks 010 = 4 clocks 011 = 5 clocks 100 = 6 clocks 101 = 8 clocks 111 = Reserved
5	101 = 8 clocks 110 = Reserved 111 = Reserved soft Post Package Repair (sPPR mode) 0 = Disabled 1 = Enabled Internal V _{REF} monitor 0 = Disabled 1 = Enabled Temperature controlled refresh mode 0 = Disabled 1 = Enabled
4	Internal V _{REF} monitor 0 = Disabled 1 = Enabled
3	Temperature controlled refresh mode 0 = Disabled 1 = Enabled
2	Temperature controlled refresh range 0 = Normal temperature mode 1 = Extended temperature mode
1	Maximum power savings mode 0 = Normal operation 1 = Enabled
0	RFU 0 = Must be programmed to 0 1 = Reserved

Note: 1. Not allowed when 1/4 rate gear-down mode is enabled.

WRITE Preamble

Programmable WRITE preamble, t WPRE, can be set to $1{}^{t}$ CK or $2{}^{t}$ CK via the MR4 register. The $1{}^{t}$ CK setting is similar to DDR3. However, when operating in $2{}^{t}$ CK WRITE preamble mode, CWL must be programmed to a value at least 1 clock greater than the lowest CWL setting supported in the applicable t CK range.

READ Preamble

Programmable READ preamble ^tRPRE can be set to 1^tCK or 2^tCK via the MR4 register. Both the 1^tCK and 2^tCK DDR4 preamble settings are different from that defined for the DDR3 SDRAM. Both DDR4 READ preamble settings may require the memory controller to train (or read level) its data strobe receivers using the READ preamble training.

When operating in 2^tCK WRITE preamble mode, CWL must be programmed to a value at least 1 clock greater than the lowest CWL setting supported in the applicable ^tCK range. Some even setting will require addition of 2 clocks. If the alternate longer CWL was used, the additional clocks will not be required.

READ Preamble Training

Programmable READ preamble training can be set to 1^tCK or 2^tCK mis mode can be used by the memory controller to train or READ level its data strobe receivers.

Temperature- Controlled Refresh

When temperature-controlled refresh mode is enabled, the device may adjust the internal refresh period to be longer than ^tREFI of the normal temperature range by skipping external REFRESH commands with the proper gear ratio. For example, the DRAM temperature sensor betected less than 45°C. Normal temperature mode covers the range of 0°C to 85°C, while the extended temperature range covers 0°C to 95°C.

Command Address Latency

COMMAND ADDRESS LATENCY (CAL) is a power savings feature and can be enabled or disabled via the MRS setting. CAL is defined as the deay in clock cycles (tCAL) between a CS_n registered LOW and its corresponding registered command and coldress. The value of CAL (in clocks) must be programmed into the mode register and is based on the roundup (in docks) of [tCK(ns)/tCAL(ns)].

Internal VREF Monitor

The device generates its own internal V_{REFDQ} . This mode may be enabled during V_{REFDQ} training, and when enabled, $V_{REE,time-short}$ and $V_{REE,time-long}$ need to be increased by 10ns if DQ0, DQ1, DQ2, or DQ3 have 0pF loading. An additional 15ns per pF of loading is also needed.

Maximum Power Savings Mode

This mode provides the lowest power mode where data retention is not required. When the device is in the maximum power saving mode, it does not need to guarantee data retention or respond to any external command (except the MAXIMUM POWER SAVING MODE EXIT command and during the assertion of RESET_n signal LOW).

Mode Register 5

Mode register 5 (MR5) controls various device operating modes as shown in the following register definition table. Not all settings listed may be available on a die; only settings required for speed bin support are available. MR5 is written by issuing the MRS command while controlling the states of the BGx, BAx, and Ax address pins. The mapping of address pins during the MRS command is shown in the following MR5 Register Definition table.

TABLE	95: /	\DDF	RESS	Pin	MAF	PIN	G															
Address bus	BG1	BG0	BA1	BA0	A17	RAS _n	CAS _n	WE _n	A13	A12	A11	A10	A9	A8	A7	A6	A5	A4	А3	A2	A1	A0
Mode register	21	20	19	18	17	-	-	-	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Note: 1. RAS_n, CAS_n, and WE_n must be LOW during MODE RECUSTER SET command.

TABLE 96	S: MR5 REGISTER DEFINITION
Mode Register	Description
21	RFU 0 = Must be programmed to 0 1 = Reserved
20:18	RFU 0 = Must be programmed to 0 1 = Reserved MR select 000 = MR0 001 = MR1 010 = MR2 011 = MR3 100 = MR4 101 = MR5 110 = MR6 111 = DNU
17	N/A on 4Gb and 8Gb, RFV 0 = Must be program ed to 0 1 = Reserved
13	RFU 0 = Must be programmed to 0 1 = Reserved
12	Data bus inversion (DBI) – READ DBI enable 0 = Disabled 1 = Enabled
11	Data bus inversion (DBI) – WRITE DBI enable 0 = Disabled 1 = Enabled
10	Data mask (DM) 0 = Disabled 1 = Enabled

Mode	
Register	Description
9	CA parity persistent error mode
	0 = Disabled
	1 = Enabled
8:6	Parked ODT value (TT(Park))
	$000 = R_{TT(Park)}$ disabled
	001 = RZQ/4 (60 ohm)
	010 = RZQ/2 (120 ohm)
	011 = RZQ/6 (40 ohm)
	100 = RZQ/1 (240 ohm)
	101 = RZQ/5 (48 ohm)
	110 = RZQ/3 (80 ohm)
	111 = RZQ/7 (34 ohm)
5	ODT input buffer for power-down
	0 = Buffer enabled
	1 = Buffer disabled
4	CA parity error status
	0 = Clear
	1 = Error
3	CRC error status
	0 = Clear
	100 = RZQ/7 (240 offilit) 101 = RZQ/5 (48 ohm) 110 = RZQ/3 (80 ohm) 111 = RZQ/7 (34 ohm) ODT input buffer for power-down 0 = Buffer enabled 1 = Buffer disabled CA parity error status 0 = Clear 1 = Error CRC error status 0 = Clear 1 = Error CA parity latency mode
2:0	
	000 = Disable
	001 = 4 clocks (DDR4-1600/1866/2125)
	010 = 5 clocks (DDR4-2400) ¹
	011 = 6 clocks (DDR4-2666)
	100 = 8 clocks (DDR4-2933) 5200
	101 = Reserved
	110 = Reserved 111 = Reserved

Data Bus Inversion

The DATA BUS INVERSION (DBI) function has been added to the device and is supported only for x8 and x16 configurations (x4 is not supported). The DBI function shares a common pin with the DM and TDQS functions. The DBI function applies to both READ and WRITE operations; Write DBI cannot be enabled at the same time the DM function is enabled. Refer to the TDQS Function Matrix table for valid configurations for all three functions (TDQS/DM/DBI). DBI is not allowed during MPR READ operation; during an MPR read, the DRAM ignores the read DBI enable setting in MR5 bit A12. DBI is not allowed during MPR READ operations.

Data Mask

The DATA MASK (DM) function, also described as a partial write, has been added to the device and is supported only for x8 and x16 configurations (x4 is not supported). The DM function shares a common pin with the DBI and TDQS functions. The DM function applies only to WRITE operations and cannot be enabled at the same time the write DBI function is enabled. Refer to the TDQS Function Matrix table for valid configurations for all three functions (TDQS/DM/DBI).

CA Parity Persistent Error Mode

Normal CA parity mode (CA parity persistent mode disabled) no longer performs CA parity checking while the parity error status bit remains set at 1. However, with CA parity persistent mode enabled, CA parity checking continues to be performed when the parity error status bit is set to a 1.

ODT Input Buffer for Power-Down

This feature determines whether the ODT input buffer is on or off during sower-down. If the input buffer is configured to be on (enabled during power-down), the ODT input signal must be at a valid logic level. If the input buffer is configured to be off (disabled during power-down), the ODT input signal may be floating and the device does not provide $R_{TT(NOM)}$ termination. However, the device may provide $R_{T(Park)}$ termination depending on the MR settings. This is primarily for additional power savings.

CA Parity Error Status

The device will set the error status bit to 1 upox detecting a parity error. The parity error status bit remains set at 1 until the device controller clears it explicitly using an MRS command.

CRC Error Status

The device will set the error status bit to 1 upon detecting a CRC error. The CRC error status bit remains set at 1 until the device controller deals it explicitly using an MRS command.

CA Parity Latency Mode

CA parity is enabled when a latency value, dependent on tCK, is programmed; this accounts for parity calculation delay internal to the device. The normal state of CA parity is to be disabled. If CA parity is enabled, the device must ensure there are no parity errors before executing the command. CA parity signal (PAR) covers ACT_n, RAS_n/A16, CAS_n/A15, WE_n/A14, and the address bus including bank address and bank group bits. The control signals CKE, ODT, and CS_n are not included in the parity calculation.

Mode Register 6

Mode register 6 (MR6) controls various device operating modes as shown in the following register definition table. Not all settings listed may be available on a die; only settings required for speed bin support are available. MR6 is written by issuing the MRS command while controlling the states of the BGx, BAx, and Ax address pins. The mapping of address pins during the MRS command is shown in the following MR6 Register Definition table.

7 TABLE	97: /	\ DDF	RESS	Pin	MAF	PIN	G															
Address bus	BG1	BG0	BA1	BA0	A17	RAS _n	CAS _n	WE _n	A13	A12	A11	A10	A9	A8	A7	A6	A5	A4	А3	A2	A1	A0
Mode register	21	20	19	18	17	-	-	-	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Note: 1. RAS_n, CAS_n, and WE_n must be LOW during MODE ASSISTER SET command.

TABLE 98	8: MR6 Register Definition
Mode	
Register	Description
21	RFU
	0 = Must be programmed to 0
	1 = Reserved
20:18	MR select
	000 = MR0
	001 = MR1
	010 = MR2
	011 = MR3
	100 = MR4
	101 = MR5
	110 = MR6
	011 = MR3 100 = MR4 101 = MR5 110 = MR6 111 = DNU
17	NA on 4Gb and 8Gb, RFO
	0 = Must be programmed to 0
	1 = Reserved
13	RFU
	0 = Must be programmed to 0
	1 = Reserved
12:10	^t CCD_L
	000 = 4 clocks (≤1333 Mb/s)
	001 = 5 clocks (>1333 Mb/s and ≤1866 Mb/s)
	010 = 6 clocks (>1866 Mb/s and ≤2400 Mb/s)
	011 = 7 clocks (>2400 Mb/s and ≤2666 Mb/s)
	100 = 8 clocks (>2666 Mb/s and ≤3200 Mb/s)
	101 = Reserved
	110 = Reserved
	111 = Reserved

TABLE 98	3: MR6 REGISTER DEFINITION (CONTINUED)
Mode Register	Description
9, 8	RFU 0 = Must be programmed to 0 1 = Reserved
7	V _{REF} Calibration Enable 0 = Disable 1 = Enable
6	V _{REF} Calibration Range 0 = Range 1 1 = Range 2
5:0	V _{REF} Calibration Value See the V _{REFDQ} Range and Levels table in the V _{REFDQ} Calibration section

^tCCD_L Programming

The device controller must program the correct ${}^{t}CCD_{-}L$ value. ${}^{t}CCD_{-}L$ will be programmed according to the value defined per operating frequency in the AC parameter table. Although JEDEC specifies the larger of 5nCK or Xns, Micron's DRAM supports the larger of 4nCK or Xns.

V_{REFDQ} Calibration Enable

 V_{REFDQ} calibration is where the device internally generates its own V_{REFDQ} to be used by the DQ input receivers. The V_{REFDQ} value will be output on any DQ of V_{REFDQ} for evaluation only. The device controller is responsible for setting and calibrating the internal V_{REFDQ} level using an MRS protocol (adjust up, adjust down, and so on). It is assumed that the controller will use a sortes of writes and reads in conduction with V_{REFDQ} adjustments to optimize and verify the data eye. Enabling V_{REFDQ} calibration must be used whenever values are being written to the MR6[6:0] register.

V_{REFDQ} Calibration Range

The device defines two V_{REFDQ} calibration ranges: Range 1 and Range 2. Range 1 supports V_{REFDQ} between 60% and 92% of V_{DDQ} while Range 2 supports V_{REFDQ} between 45% and 77% of V_{DDQ} , as seen in V_{REFDQ} Specification table. Although not a restriction, Range 1 was targeted for module-based designs and Range 2 was added to target pointto-point designs.

V_{REFDQ} Calibration Value

Fifty settings provide approximately 0.65% of granularity steps sizes for both Range 1 and Range 2 of V_{REFDQ} , as seen in V_{REFDQ} Range and Levels table in the V_{REFDQ} Calibration section.

TABLE 99: COMMAND TRUTH TABLE

Notes 1–5 apply to the entire table; Note 6 applies to all READ/WRITE commands

Function		Symbol	Prev. CKE	Pres. CKE	CS_n	ACT_n	RAS_n/A16	CAS_n/A15	WE_n/A14	BG[1:0]	BA [1:0]	C[2:0]	A12/BC_n	A[13,11]	A10/AP	A[9:0]	Notes
MODE REGI	MODE REGISTER SET MRS H H L H L		L	L	BG	BA	V		OP (ode		7					
REFRESH		REF	Н	Н	L	Н	L	L	Н	V	٧	V	٧	V	V	V	
Self refresh	entry	SRE	Н	L	L	Н	L	L	Н	V	٧	V	٧	V	٧	V	8, 9, 10
Self refresh	exit	SRX	L	Н	H	X	X H	X	X	X	X V	X	X	X	X V	X	8, 9, 10 11
Single-bank	C PRECHARGE	PRE	Н	Н	L	Н	L	Н	L	BG	BA	7	N -	V	L	V	
PRECHARGE		PREA	Н.	Н	L	Н	L	Н Н	L	V	V _A		V	V	Н	V	
Reserved fo		RFU	Н.	Н.	L	Н	L	Н.	Н	V		Y	RFU	V	11	V	
Bank ACTIV																	
WRITE	BL8 fixed, BC4 fixed	WR	Н	Н	L	Н	Н	L	L	R G	BA	V	V	V	L	CA	
	BC4OTF	WRS4	Н	Н	L	Н	Н	L	L 	BG	ВА	V	L	V	L	CA	
	BL8OTF	WRS8	Н	Н	L	Н	Н	L		ВĞ	BA	V	Н	V	L	CA	
WRITE	BL8 fixed, BC4 fixed	WRA	Н	Н	L	Н	Н		X	BG	BA	V	V	V	Н	CA	
with auto	BC4OTF	WRAS4	Н	Н	L	Н	Н) L	BG	BA	V	L	V	Н	CA	
precharge	BL8OTF	WRAS8	Н	Н	L	Н	Н	L	L	BG	BA	V	Н	V	Н	CA	
READ	BL8 fixed, BC4 fixed	RD	Н	Н	L	Н	4		Н	BG	BA	V	٧	V	L	CA	
	BC4OTF	RDS4	Н	Н	L	Н	H	L	Н	BG	ВА	V	L	V	L	CA	
	BL8OTF	RDS8	Н	Н	L	H	Н	L	Н	BG	BA	V	Н	V	L	CA	
READ	BL8 fixed, BC4 fixed	RDA	Н	Н			Н	L	Н	BG	ВА	٧	٧	V	Н	CA	
with auto	BC4OTF	RDAS4	Н	Н		H	Н	L	Н	BG	ВА	V	L	V	Н	CA	
precharge	BL8OTF	RDAS8	Н	Н		Н	Н	L	Н	BG	BA	V	Н	V	Н	CA	
NO OPERAT	TON	NOP	Н	4		Н	Н	Н	Н	V	V	V	V V V		12		
Device DESI	ELECTED	DES	Н.	N	Н	Х	Х	Х	Х	Х	Х	Х	X X X X		13		
Power-dow	Power-down entry PDE			L	Н	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	10, 14
Power-dow	n exit	PDY	77	Н	Н	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	10, 14
ZQ CALIBRA	ATION LONG	ZQC	Н	Н	L	Н	Н	Н	L	Х	Х	Х	X X H X		Х		
ZQ CALIBRA	ATION SHORT	V QCS	Н	Н	L	Н	Н	Н	L	Х	Х	Х	Х	Х	L	Х	

Truth Table Notes

Notes: 1. • BG = Bank group address

- BA = Bank address
- RA = Row address
- CA = Column address
- BC_n = Burst chop
- X = "Don't Care"
- V = Valid
- 2. All DDR4 SDRAM commands are defined by states of CS_n, ACT_n, RAS_n/A16, CAS_n/A15, WE_n/A14, and CKE at the rising edge of the clock. The MSB of BG, BA, RA, and CA are device density- and configuration-dependent. When ACT_n = H, pins RAS_n/A16, CAS_n/A15, and WE_n/A14 are used as command pins RAS_n, CAS_n, and WE_n, respectively. When ACT_n = L, pins RAS_n/A16, CAS_n/A15, and WE_n/A14 are used as address pins A16, A15, and A14, respectively.
- 3. RESET_n is enabled LOW and is used only for asynchronic sest and must be maintained HIGH during any function.
- 4. Bank group addresses (BG) and bank addresses (BA) determine which bank within a bank group is being operated upon. For MRS commands, the BG and BA selects the specific mode register location.
- 5. V means HIGH or LOW (but a defined logicle I), and X means either defined or undefined (such as floating) logic level.
- 6. READ or WRITE bursts cannot be terminated or interrupted, and fixed/on-the-fly (OTF) BL will be defined by MRS.
- 7. During an MRS command, A17 it RFU and is device density- and configuration-dependent.
- 8. The state of ODT does not abled the states described in this table. The ODT function is not available during self-refresh.
- 9. VPP and VREF (VREFEA) must be maintained during SELF REFRESH operation.
- 10. Refer to the Truth Table CKE table for more details about CKE transition.
- 11. Controller gual intrees self refresh exit to be synchronous. DRAM implementation has the choice of eithersynchronous or asynchronous.
- 12. The NO ON RATION (NOP) command may be used only when exiting maximum power saving mode or when entering gear-down mode.
- 13. The OP command may not be used in place of the DESELECT command.
- 14. The power-down mode does not perform any REFRESH operation.

TABLE 100: CKE TRUTH TABLE

Note 1 applies to the entire table

	CH	(E			
Current State	Previous Cycle (n - 1)	Present Cycle (n)	Command (n)	Action (n)	Notes
Power-down	L	L	Х	Maintain power-down	8, 10, 11
	L	Н	DES	Power-down exit	8, 10, 12
Self refresh	L	L	X	Maintain self refresh	11, 13
	L	Н	DES	Self refresh exit	8, 13, 14, 15
Bank(s) active	Н	L	DES	Active power-down entry	8, 10, 12, 16
Reading	Н	L	DES	Power-down entry	8, 10, 12, 16, 17
Writing	Н	L	DES	Power-down entry	8, 10, 12, 16, 17
Precharging	Н	L	DES	Power down entry	8, 10, 12, 16, 17
Refreshing	Н	L	DES	Precharge power-down entry	8, 12
All banks idle	Н	L	DES	Recharge power-down entry	8, 10, 12, 16, 18
	Н	L	REFRESH	Self refresh	16, 18, 19

- he DDR4 SDRAM immediately prior to clock Notes: 1. Current state is defined as the st edge n.
 - XI at clock edge n; CKE (n-1) was the state of CKE at the 2. CKE (n) is the logic state of C previous clock edge.
 - 3. COMMAND (n) is the command registered at clock edge n, and ACTION (n) is a result of not included here.
 - ot shown are illegal or reserved unless explicitly described
 - does not affect the states described in this table. The ODT function is
 - KE transition (registration of CKE H->L or CKE H->L), the CKE level must be Thed until 1 nCK prior to ^tCKE (MIN) being satisfied (at which time CKE may transi-
 - ECT and NOP are defined in the Truth Table Command table.
 - power-down entry and exit parameters, see the Power-Down Modes section.
 - CKE LOW is allowed only if ^tMRD and ^tMOD are satisfied.
 - 10. The power-down mode does not perform any REFRESH operations.
 - 11. X = "Don't Care" (including floating around VREF) in self refresh and power-down. X also applies to address pins.
 - 12. The DESELECT command is the only valid command for power-down entry and exit.
 - 13. VPP and V_{REFCA} must be maintained during SELF REFRESH operation.
 - 14. On self refresh exit, the DESELECT command must be issued on every clock edge occurring during the ^tXS period. READ or ODT commands may be issued only after ^tXSDLL is satisfied.
 - 15. The DESELECT command is the only valid command for self refresh exit.
 - 16. Self refresh cannot be entered during READ or WRITE operations. For a detailed list of restrictions see the SELF REFRESH Operation and Power-Down Modes sections.
 - 17. If all banks are closed at the conclusion of the READ, WRITE, or PRECHARGE command, then precharge power-down is entered; otherwise, active power-down is entered.

- 18. Idle state is defined as all banks are closed (tRP, tDAL, and so on, satisfied), no data bursts are in progress, CKE is HIGH, and all timings from previous operations are satisfied (tMRD, tMOD, tRFC, tZQinit, tZQoper, tZQCS, and so on), as well as all self refresh exit and power-down exit parameters are satisfied (tXS, tXP, tXSDLL, and so on).
- 19. Self refresh mode can be entered only from the all banks idle state.
- 20. For more details about all signals, see the Truth Table Command table; must be a legal command as defined in the table.

NOP Command

NOP Command

The NO OPERATION (NOP) command was originally used to instruct the selected DDR4 SDRAM to perform a NOP (CS_n = LOW and ACT_n, RAS_n/A16, CAS_n/A15, and WE_n/A14 = HIGH). This prevented unwanted commands from being registered during idle or wait states. NOP command general support has been removed and the command should not be used unless specifically allowed, which is when exiting maximum power-saving mode or when entering gear-down mode.

DESELECT Command

The deselect function (CS_n HIGH) prevents new commands from being executed; therefore, with this command, the device is effectively deselected. Operations already in progress are not affected.

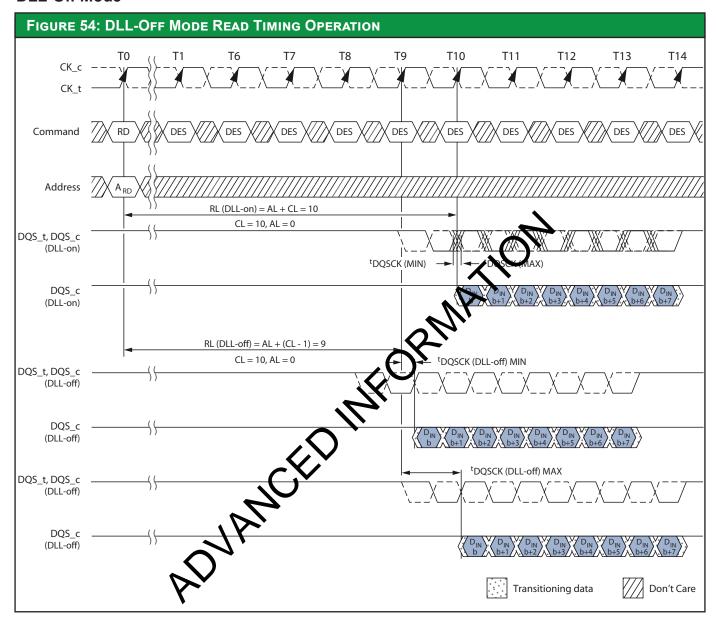
DLL-Off Mode

DLL-off mode is entered by setting MR1 bit A0 to which will disable the DLL for subsequent operations until the A0 bit is set back to 1. The MR1 A0 bit for DLL ontrol can be switched either during initialization or during self refresh mode. Refer to the Input Clock Frequency Change section for more details.

The maximum clock frequency for DLL off node is specified by the parameter ^tCKDLL_OFF. There is no minimum frequency limit besides the need to saisly the refresh interval, ^tREFI.

Due to latency counter and timing estrictions, only one CL value and CWL value (in MR0 and MR2 respectively) are supported. The DLL-off mode is only required to support setting both CL = 10 and CWL = 9.

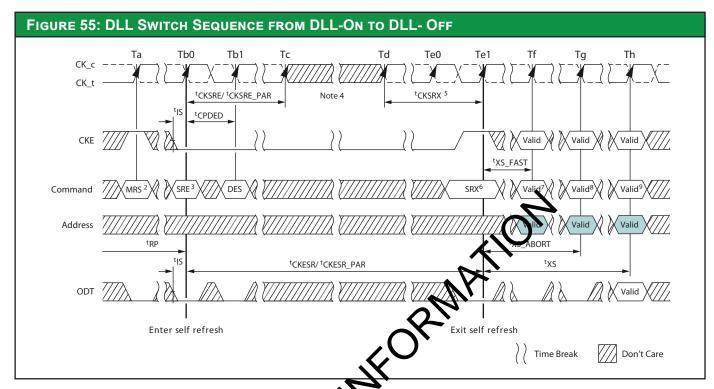
DLL-off mode will affect the had data clock-to-data strobe relationship (^tDQSCK), but not the data strobe-to-data relationship (^tDQSQ, tQH). Special attention is needed to line up read data to the controller time domain.


Compared with DLL-on mode, where ^tDQSCK starts from the rising clock edge (AL + CL) cycles after the READ command, the DLL-off mode ^tDQSCK starts (AL + CL - 1) cycles after the READ command. Another difference is that ^tDQSCK may not be small compared to ^tCK (it might even be larger than ^tCK), and the difference between ^tDQSCK (MIN) and ^tDQSCK (MAX) is significantly larger than in DLL-on mode. The ^tDQSCK (DLL-off) values are vendor-specific.

The timing relations on DLL-off mode READ operation are shown in the following diagram, where CL = 10, AL = 0, and BL = 8.

The DLL-off mode is entered by setting MR1 bit A0 to 1; this will disable the DLL for subsequent operations until the A0 bit is set back to 0.

DLL-Off Mode

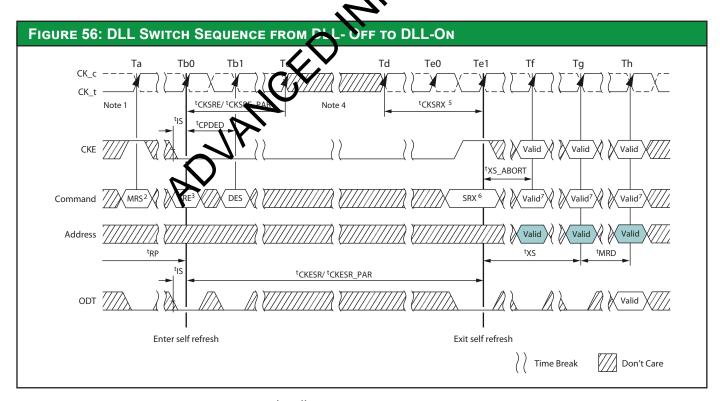

DDL Switch Sequence from DLL-On to DLL-Off

To switch from DLL-on to DLL-off requires the frequency to be changed during self refresh, as outlined in the following procedure:

- 1. Starting from the idle state (all banks pre-charged, all timings fulfilled, and, to disable the DLL, the DRAM on-die termination resistors, R_{TT(NOM)}, must be in High-Z before MRS to MR1.)
- 2. Set MR1 bit A0 to 1 to disable the DLL.
- 3. Wait ^tMOD.
- 4. Enter self refresh mode; wait until ^tCKSRE/^tCKSRE PAR is satisfied.
- 5. Change frequency, following the guidelines in the Input Clock Frequency Change section.
- 6. Wait until a stable clock is available for at least ^tCKSRX at device inputs.
- 7. Starting with the SELF REFRESH EXIT command, CKE must continuously be registered HIGH until all ^tMOD timings from any MRS command are satisfied. In addition, if any ODT features were enabled in the mode registers when self refresh mode was entered, the ODT signal must continuously be registered LOW until all ^tMOD timings from any MRS command are satisfied. If R_{TT(NOM)} was disabled in the mode registers when self refresh mode was entered, the ODT signal is "Don't Care."
- 8. Wait ^tXS_FAST, ^tXS_ABORT, or ^tXS, and then set mode registers with the propriate values (an update of CL, CWL, and WR may be necessary; a ZQCL command can also be issued after ^tXS_FAST).
 - tXS_FAST: ZQCL, ZQCS, and MRS commands. For MRS commands, only CL and WR/RTP registers in MR0, the CWL register in MR2, and gear-down mode in MR3 may be accessed provided the device is not in per-DRAM addressability mode. Access to other device rande registers must satisfy tXS timing.
 - tXS_ABORT: If the bit is enabled, then the device abouts any ongoing refresh and does not increment the refresh counter. The controller can issue a valid command after a delay of tXS_ABORT. Upon exiting from self refresh, the device requires a minimum of objective REFRESH command before it is put back into self refresh mode. This requirement remains the same regardless of the MRS bit setting for self refresh abort.
 - tXS: ACT, PRE, PREA, REF, SRE, PDE, WR, WRS4, WRS8, WRA, WRAS4, WRAS8, RD, RDS4, RDS8, RDA, RDAS4, and RDAS8.
- 9. Wait ^tMOD to complete.

The device is ready for the next command.

- Notes:
- 1. Starting in the idle state
 - 2. Disable DLL by sett MRT bit A0 to 0.
 - 3. Enter SR.
 - Change free
 - ble tCKSRX.
 - Exit SF
 - ode registers allowed with DLL-off settings met.



DDL-Off to DLL-On Procedure

To switch from DLL-off to DLL-on (with required frequency change) during self refresh:

- 1. Starting from the idle state (all banks pre-charged, all timings fulfilled, and DRAM ODT resistors (R_{TT(NOM)}) must be in High-Z before self refresh mode is entered.)
- 2. Enter self refresh mode; wait until ^tCKSRE/^tCKSRE_PAR are satisfied.
- 3. Change frequency (following the guidelines in the Input Clock Frequency Change section).
- 4. Wait until a stable clock is available for at least ^tCKSRX at device inputs.
- 5. Starting with the SELF REFRESH EXIT command, CKE must continuously be registered HIGH until ^tDLLK timing from the subsequent DLL RESET command is satisfied. In addition, if any ODT features were enabled in the mode registers when self refresh mode was entered, the ODT signal must continuously be registered LOW or HIGH until ^tDLLK timing from the subsequent DLL RESET command is satisfied. If R_{TT(NOM)} disabled in the mode registers when self refresh mode was entered, the ODT signal is "Don't Care."
- 6. Wait tXS or tXS_ABORT, depending on bit x in RMy, then set MR1 bit A0 to 0 to the the DLL.
- 7. Wait ^tMRD, then set MR1 bit A8 to 1 to start DLL reset.
- 8. Wait ^tMRD, then set mode registers with appropriate values; an update of CLCWL, and WR may be necessary. After ^tMOD is satisfied from any proceeding MRS command, a ZCCL command can also be issued during or after tDLLK.
- 9. Wait for ^tMOD to complete. Remember to wait ^tDLLK after DLL RICE, before applying any command requiring a locked DLL. In addition, wait for ^tZQoper in case a ZQCL and and was issued.

The device is ready for the next command.

Notes: 1. Starting in the idle state.

2. Enter SR

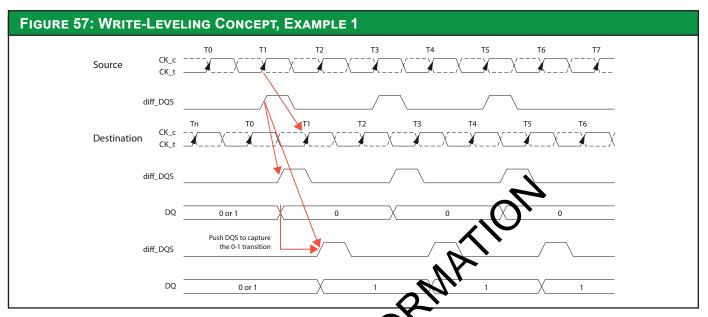
- 3. Change frequency.
- 4. Clock must be stable ^tCKSRX.
- 5. Exit SR
- 6. Set DLL to on by setting MR1 to A0 = 0.
- 7. Update mode registers.
- 8. Issue any valid command.

Input Clock Frequency Change

After the device is initialized, it requires the clock to be stable during almost all states of normal operation. This means that after the clock frequency has been set and is in the stable state, the clock period is not allowed to deviate except for what is allowed by the clock jitter and spread spectrum clocking (SSC) credifications. The input clock frequency can be changed from one stable clock rate to another stable clock rate only when in self refresh mode. Outside of self refresh mode, it is illegal to change the clock frequency.

After the device has been successfully placed in self refresh mode and ^tCKSRE/CKSRE_PAR have been satisfied, the state of the clock becomes a "Don't Care." Following a "Don't Care," changing the clock frequency is permissible, provided the new clock frequency is stable prior to ^tCKSRX. When a turing and exiting self refresh mode for the sole purpose of changing the clock frequency, the self refresh entry and exit specifications must still be met as outlined in SELF REFRESH Operation.

For the new clock frequency, additional MRS commands to MRO, MR2, MR3, MR4, and MR6 may need to be issued to program appropriate CL, CWL, gear-down mode, READ and WRITE preamble, and tCCD_L/tDLLK values. If MR6 is issued prior to self refresh entry for new the tDLLK value DLL will relock automatically at self refresh exit. However, if MR6 is issued after self refresh entry, MR0 must be issued to reset the DLL.

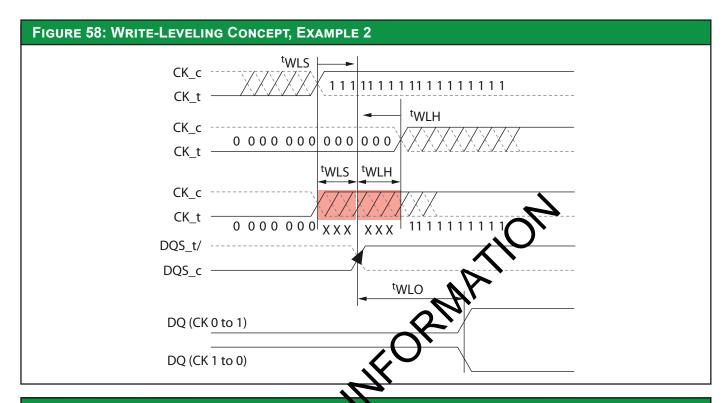

The device input clock frequency can change only within the minimum and maximum operating frequency specified for the particular speed grade. Any frequency change below the minimum operating frequency would require the use of DLL-on mode to DLL- off mode many ion sequence (see DLL-On/Off Switching Procedures).

For better signal integrity, DDR4 memory abdules use fly-by topology for the commands, addresses, control signals, and clocks. Fly-by topology has benefits from the reduced number of stubs and their length, but it also causes flight-time skew between clock and strobe at every DRAM on the DIMM. This makes it difficult for the controller to maintain ¹DQSS, ¹DSS, and ¹DSH specifications. Therefore, the device supports a write-leveling feature to allow the controller to compensate for key. This feature may not be required under some system conditions, provided the host can maintain the ¹DQS, ²DSS, and tDSH specifications.

The memory controller can use the write-leveling feature and feedback from the device to adjust the DQS (DQS_t, DQS_c) to CK (CK_t, CK_c) relationship. The memory controller involved in the leveling must have an adjustable delay setting on DQS to align the rising edge of DQS with that of the clock at the DRAM pin. The DRAM asynchronously feeds back CK, sampled with the rising edge of DQS, through the DQ bus. The controller repeatedly delays DQS until a transition from 0 to 1 is detected. The DQS delay established though this exercise would ensure the tDQSS specification. Besides ^tDQSS, ^tDSS and ^tDSH specifications also need to be fulfilled. One way to achieve this is to combine the actual ^tDQSS in the application with an appropriate duty cycle and jitter on the DQS signals. Depending on the actual ^tDQSS in the application, the actual values for ^tDQSL and ^tDQSH may have to be better than the absolute limits provided in the AC Timing Parameters section in order to satisfy tDSS and ^tDSH specifications. A conceptual timing of this scheme is shown below.

ST9D4512M40DBG0

Write Leveling



DQS driven by the controller during leveling mode must be terminated by the DRAM based on the ranks populated. Similarly, the DQ bus driven by the DRAM must also be terminated at the controller.

All data bits carry the leveling feedback to the controller across the DRAM configurations. All byte lanes should be leveled independently. Therefore, a separate feedback pechanism should be available for each byte lane.

The figure below is another representative way to view the write-leveling procedure. Although it shows the clock varying to a static strobe, this is for illustrative purpose only; the clock does not actually change phase, the strobe is what actually varies. By issuing multiple Wipbursts, the DQS strobe can be varied to capture with fair accuracy the time at which the clock edge arrives at the DRAM clock input buffer.

DRAM Setting for Write Leveling and DRAM TERMINATION Function in that Mode

The DRAM enters into wate-leveling mode if A7 in MR1 is HIGH. When leveling is finished, the DRAM exits write-leveling mode if A7 in MR1 is LOW (see the MR Leveling Procedures table). Note that in write-leveling mode, only DQS terminations are activated and deactive ed via the ODT pin, unlike normal operation (see DRAM DRAM TERMINATION Cancion in Leveling Mode table).

TABLE 101: MR SETTINGS FI)R LEVELING PROCEDURES										
Function	MR1	Enable	Disable							
Write leveling enable	A7	1	0							
Output buffer mode (Q off)	A12	0	1							

TABLE 102: DRAM TERMINAT	TABLE 102: DRAM TERMINATION FUNCTION IN LEVELING MODE									
ODT Pin at DRAM DQS_t/DQS_c Termination DQ Termination										
R _{TT(NOM)} with ODT HIGH On Off										

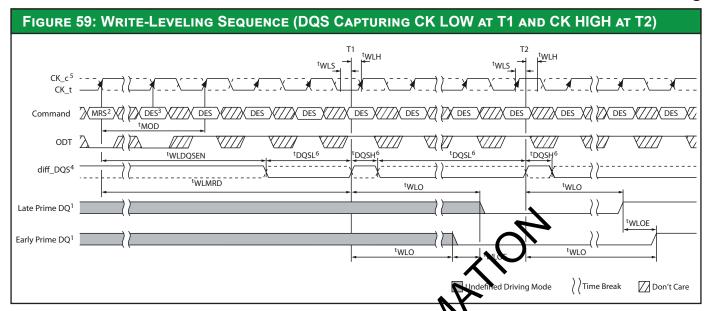
TABLE 102: DRAM TERMINAT	TABLE 102: DRAM TERMINATION FUNCTION IN LEVELING MODE (CONTINUED)									
ODT Pin at DRAM	DQS_t/DQS_c Termination	DQ Termination								
R _{TT(Park)} with ODT LOW	On	Off								

- Notes: 1. In write-leveling mode, with the mode's output buffer either disabled (MR1[bit7] = 1 and MR1[bit12] = 1) or with its output buffer enabled (MR1[bit7] = 1 and MR1[bit12] = 0), all R_{TT(NOM)} and R_{TT(Park)} settings are supported.
 - 2. R_{TT(WR)} is not allowed in write-leveling mode and must be set to disable prior to entering write-leveling mode.

Procedure Description

The memory controller initiates the leveling mode of all DRAM by setting bit 7 or leveling mode, the DQ pins are in undefined driving mode.

During write-leveling mode, only the DESELECT command is supported, other than MRS commands to change the Qoff bit (MR1[A12]) and to exit write leveling (MR1[A7]). Upon exiting write leveling mode, the MRS command performing the exit (MR1[A7] = 0) may also change the MR1 bits of TBD ause the controller levels one rank at a time, the output of other ranks must be disabled by setting MR1 bit The controller may assert ODT after ^tMOD, at which time the DRAM is ready to accept the ODT signal.


The controller may drive DQS_t LOW and DQS_c HIGH after tWLDQSEN, at which time the DRAM the controller provides a single DQS_t, DQS_c edge, has applied ODT to these signals. After tDQSL and tWLMR1 which is used by the DRAM to sample CK driven from ntroller. tWLMRD (MAX) timing is controller dependent.

DQS and provides feedback on all the DQ bits asynchro-The DRAM samples CK status with the rising ed ancertainty of tWLOE defined to allow mismatch on DQ bits. The nously after tWLO timing. There is a DQ out tWLOE period is defined from the transition of the earliest DQ bit to the corresponding transition of the latest DQ

There are no read strobes (DQS_t, D needed for these DQs. The controller sam-ples incoming DQ and either setting and launch-es the next DQS pulse after some time, which is controlincrements or decrements DQS dela ler dependent. After a 0-to-1 transition is detected, the controller locks the DQS delay setting, and write leveling is achieved for the device. The following figure shows the timing diagram and parameters for the overall write-leveling procedure.

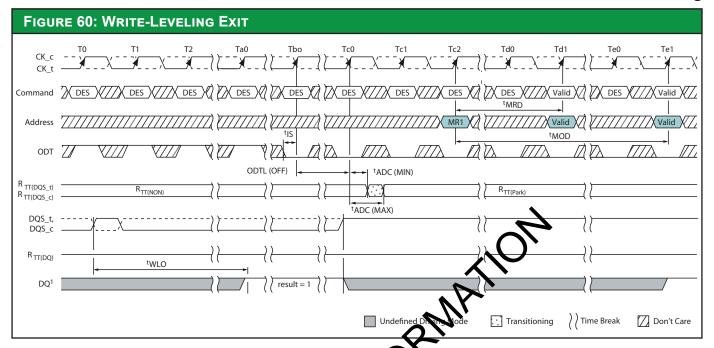
Write Leveling

Notes

- 1. The device drives leveling feedback on a property of the series of th
- 2. MRS: Load MR1 to enter write-leveling mode.
- 3. diff_DQS is the differential data grown Timing reference points are the zero crossings. DQS_t is shown with a solid lipe, DQS_c is shown with a dotted line.
- 4. CK_t is shown with a solid day line; CK_c is shown with a dotted line.
- 5. DQS needs to fulfill minimum pulse width requirements, ^tDQSH (MIN), as defined for regular WS (Es; the maximum pulse width is system dependent.
- 6. tWLDQSEN must be satisfied following equation when using ODT:
 - DLL = Enable then WLDQSEN > ^tMOD (MIN) + ODTLon + tADC
 - DLL = Disable, ben tWLDQSEN > tMOD (MIN) + tAONAS

Write-Leveling Mode Exit

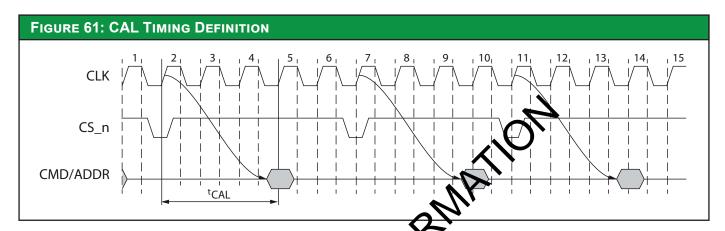
Write-leveling mode should be exited as follows:


After the last rising strobe edge (see ~T0), stop driving the strobe signals (see ~Tc0). Note that from this point on, DQ pins are in undefined driving mode and will remain undefined, until ^tMOD after the respective MR command (Te1).

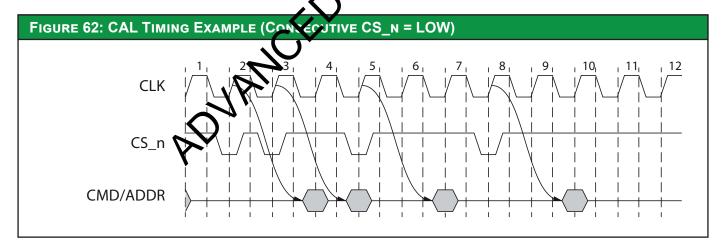
- 2. Drive ODT pin LOW (IS must be satisfied) and continue registering LOW (see Tb0).
- 3. After R_{TT} is switched off, disable write-leveling mode via the MRS command (see Tc2).
- 4. After ^tMOD is satisfied (Te1), any valid command can be registered. (MR commands can be issued after ^tMRD [Td1]).

Notes:

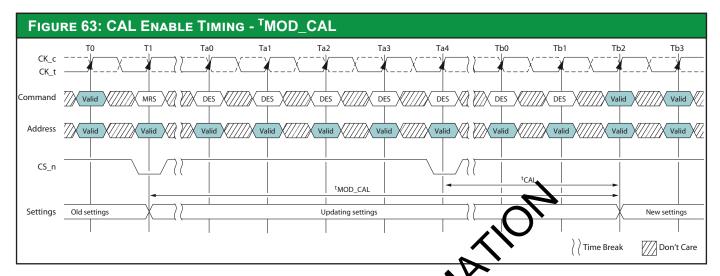
Write Leveling

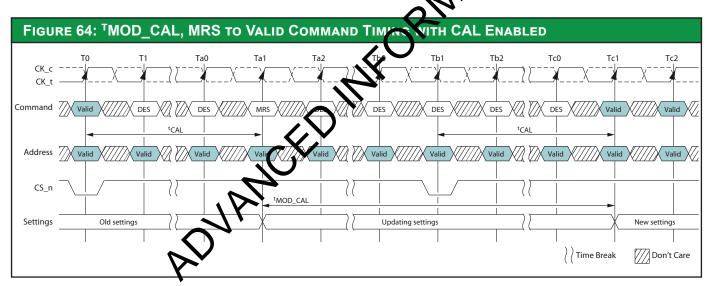

The DQ result = 1 between Ta0 and Tr0 is a result of the DQS signals capturing CK_t HIGH just after the T0 state.
 See previous figure for specific tWLO timing.

2. See previous figure for specific tWLO timing.

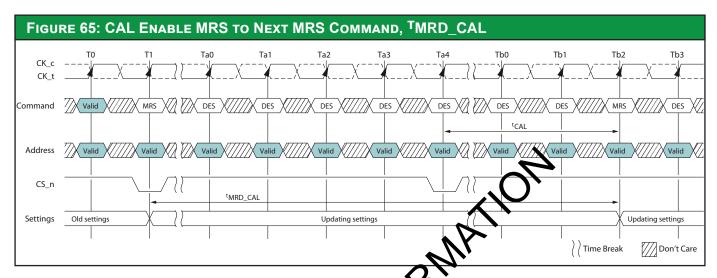


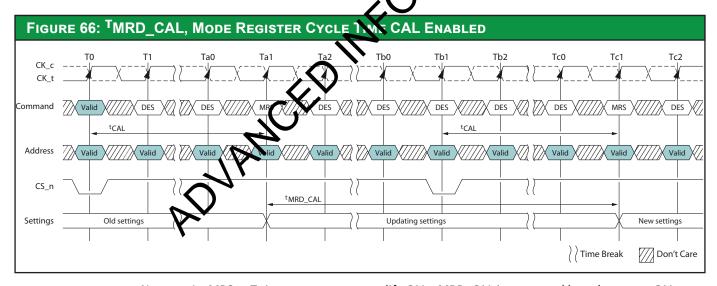
Command Address Latency


DDR4 supports the command address latency (CAL) function as a power savings feature. This feature can be enabled or disabled via the MRS setting. CAL timing is defined as the delay in clock cycles (tCAL) between a CS_n registered LOW and its corresponding registered command and address. The value of CAL in clocks must be programmed into the mode register (see MR1 Register Definition table) and is based on the equation tCK(ns)/tCAL(ns), rounded up in clocks.

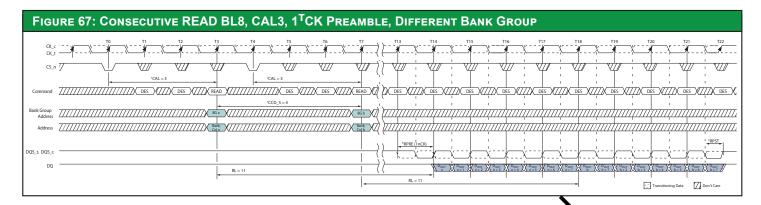

CAL gives the DRAM time to enable the command and address receivers before a command is issued. After the command and the address are latched, the receivers can be disabled if CS_n returns to HIGH. For consecutive commands, the DRAM will keep the command and address input receivers enabled for the duration of the command se-quence.

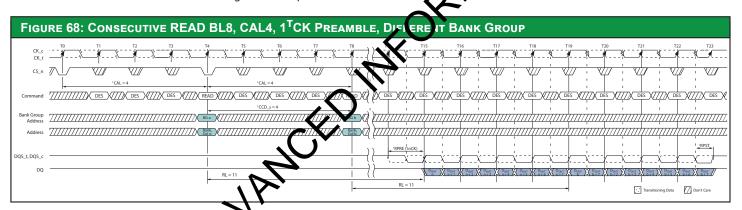
When the CAL mode is enabled, additional time is required for the MRS command to complete. The earliest the next valid command can be issued is ${}^{t}MOD_CAL$, which should be equal to ${}^{t}MOD + {}^{t}CAL$. The two following figures are examples.


Note: 1. CAL mode is enabled at T1.


Note: 1. MRS at Ta1 may or may not modify CAL, ^tMOD_CAL is computed based on new ^tCAL setting if modified.

When the CAL mode is enabled or being enabled, the earliest the next MRS command can be issued is ^tMRD_CAL is equal to ^tMOD + ^tCAL. The two following figures are examples.


Notes: 1. Command address latency mode is enabled at T1.


Notes: 1. MRS at Ta1 may or may not modify CAL, tMRD_CAL is computed based on new tCAL setting if modified.

CAL Examples: Consecutive READ BL8 with two different CALs and 1tCK preamble in different bank group shown in the following figures.

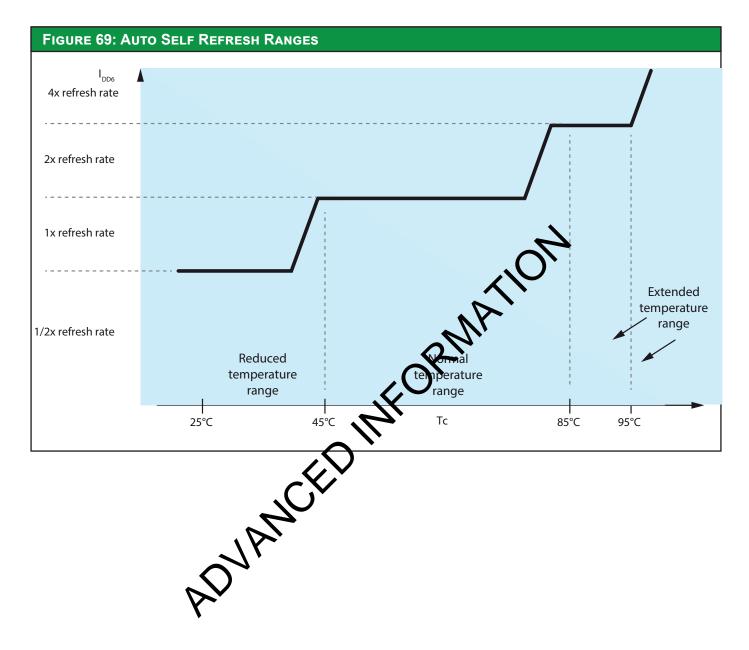
- Notes: 1. BL = 8, AL = 0, CL = 11, CAL = 3, Preamble = 1^tCK.
 - 2. DOUT n = data-out from column n; DOUT b = data-out from column
 - 3. DES commands are shown for ease of illustration, other comma valid at these times.
 - 4. BL8 setting activated by either MR0[A1:0 = 00] or MR0[A1:0 = 01) and A12 = 1 during READ command at T3 and
 - 5. CA parity = Disable, CS to CA latency = Enable, Read DBI
 - 6. Enabling CAL mode does not impact ODT control time T control timings should be maintained with the same timing relationship relative to the command a ss bus as when CAL is disabled.

Notes:

- 1. BL = 8CL = 11, CAL = 4, Preamble = 1^tCK.
- 2. data-out from column n; DOUT b = data-out from column b.
- commands are shown for ease of illustration, other commands may be valid at these times.
- 4. BL8 setting activated by either MR0[A1:0 = 00] or MR0[A1:0 = 01] and A12 = 1 during READ command at T4 and T8.
- 5. CA parity = Disable, CS to CA latency = Enable, Read DBI = Disable.
- 6. Enabling CAL mode does not impact ODT control timings. ODT control timings should be maintained with the same timing relationship relative to the command/address bus as when CAL is disabled.

Low-Power Auto Self Refresh Mode

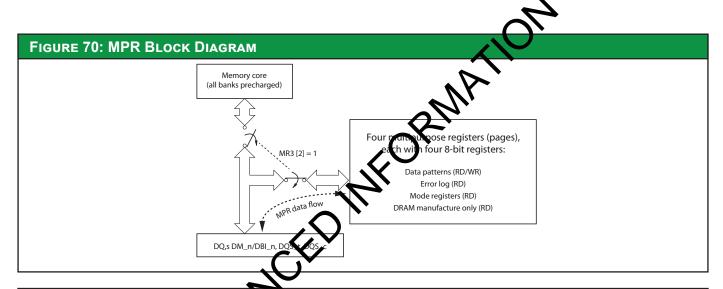
An auto self refresh mode is provided for application ease. Auto self refresh mode is enabled by setting MR2[6] = 1 and MR2[7] = 1. The device will manage self refresh entry


over the supported temperature range of the DRAM. In this mode, the device will change its self refresh rate as the DRAM operating temperature changes, going lower at low temperatures and higher at high temperatures.

Manual Self Refresh Mode

If auto self refresh mode is not enabled, the low-power auto self refresh mode register must be manually programmed to one of the three self refresh operating modes. This mode provides the flexibility to select a fixed self refresh operating mode at the entry of the self refresh, according to the system memory temperature conditions. The user is responsible for maintaining the required memory temperature condition for the mode selected during the SELF REFRESH operation. The user may change the selected mode after exiting self refresh and before entering the next self refresh. If the temperature condition is exceeded for the mode selected, there is a risk to data retention resulting in loss of data.

TABLE	103: Au	O SELF REFRESH	MODE	
MR2[7]	MR2[6]	Low-Power Auto Self Refresh Mode	SELF REFRESH Operation	Operating Temperature Range for Self Refresh Mode (DRAM T _{CASE})
0	0	Normal	Fixed normal solf refresh rate maintains data retention at the normal operating temperature. User is required to ensure that 85°C CHAM CASE (MAX) is not exceeded to avoid any risk of data loss.	0°C to 85°C
1	1	Extended temperature	Fixed high self refresh rate optimizes data retention to support the extended temperature range.	0°C to 95°C
0	1	ten perature	Variable or fixed self refresh rate or any other DRAM power consumption reduction control for the reduced temperature range. User is required to ensure 45°C DRAM T _{CASE} (MAX) is not exceeded to avoid any risk of data loss.	0°C to 45°C
1	1	Auto self refresh	Auto self refresh mode enabled. Self refresh power consumption and data retention are optimized for any given operating temperature condition.	All of the above



Multipurpose Register

The MULTIPURPOSE REGISTER (MPR) function, MPR access mode, is used to write/read specialized data to/from the DRAM. The MPR consists of four logical pages, MPR Page 0 through MPR Page 3, with each page having four 8-bit registers, MPR0 through MPR3. Page 0 can be read by any of three readout modes (serial, parallel, or staggered) while Pages 1, 2, and 3 can be read by only the serial readout mode. Page 3 is for DRAM vendor use only. MPR mode enable and page selection is done with MRS commands. Data bus inversion (DBI) is not allowed during MPR READ operation.

Once the MPR access mode is enabled (MR3[2] = 1), only the following commands are allowed: MRS, RD, RDA WR, WRA, DES, REF, and RESET; RDA/WRA have the same functionality as RD/WR which means the auto precharge part of RDA/WRA is ignored. Power-down mode and SELF REFRESH command are not allowed during MPR enable node. No other command can be issued within tRFC after a REF command has been issued; 1x refresh (only) is to be used during MPR access mode. While in MPR access mode, MPR read or write sequences must be completed prior to a REFRESH command.

TABLE 10	TABLE 104: MR3 SETTING FOR THE MPR ACCESS MODE								
Address	Operation Mode	Description							
A[12:11]	MPR data read format	00 = Serial 01 = Parallel 10 = Staggered 11 = Reserved							
A2	MPR access	0 = Standard operation (MPR not enabled) 1 = MPR data flow enabled							
A[1:0]	MPR page selection	00 = Page 0 01 = Page 1 10 = Page 2 11 = Page 3							

TABLE 105: DRAM	TABLE 105: DRAM ADDRESS TO MPR UI TRANSLATION										
MPR Location [7] [6] [5] [4] [3] [2] [1] [0]											
DRAM address – Ax	A7	A6	A5	A4	А3	A2	A1	A0			
MPR UI – UIx	UI0	UI1	UI2	UI3	UI4	UI5	Ul6	UI7			

TABLE 10	6: MPR PAGE A	ND MPRX	DEFINI	TIONS							
Address	MPR Location	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]	Note	
MPR Page 0 -	- Read or Write (Dat	a Patterns)									
BA[1:0]	00 = MPR0	0	1	0	1	0	1	0	1	Read/Write	
	01 = MPR1	0	0	1	1	0	0	1	1	(default value listed)	
	10 = MPR2	0	0	0	0	1	1	1	1	listea	
	11 = MPR3	0	0	0	0	0	0	0	0		
/IPR Page 1 -	- Read-only (Error L	og)									
BA[1:0]	00 = MPR0	A7	A6	A5	A4	A3	A2	A1	A0	Read-only	
	01 = MPR1	CAS_n/A1 5	WE_n/ A14	A13	A12	A11	A10	A9	A8		
	10 = MPR2	PAR	ACT_n	BG1	BG0	BA1	BAO	A17	RAS_n /A16		
	11 = MPR3	CRC error status	CA parity error status		rity latency], [4] = MR5 = MR5[0]			C1	CO		
MPR Page 2 -	- Read-only (MRS Re	eadout)				(/					
BA[1:0]	00 = MPR0	PPR sup- port	sPPR sup- port	R _{TT(WR)}	Tempera or s	ature sen- itatus ²	CRC write enable	R _{TT}	(WR)	Read-only	
	01 = MPR1	V _{REFDQ} trainging range		Gear- down enable							
	CAS la	tency: [7:3] = N	ЛR0[12,6	10 = 1	MPR2		CAS write M	latency [R2[5:3]	[2:0] =		
	11 = MPR3	R _{TT(NOM)} .	7.5] = MR	1[10:8]	R _{TT(Pa}	ark): [4:2] =	MR5[8:6]		[1:0] = 2[2:1]		
MPR Page 3 -	- Read-only (Restric	ted, except fo	or MPR3	[3:0])							
BA[1:0]	00 = MPR0	DC	DC	DC	DC	DC	DC	DC	DC	Read-only	
	01 = MPR1	DC	DC	DC	DC	DC	DC	DC	DC		
	10 = MPR2	DC	DC	DC	DC	DC	DC	DC	DC		
	11 = MPR3	DC	DC	DC	DC	MAC	MAC	MAC	MAC		

Notes: 1. DC = "Don't Care"

2. MPR[4:3] 00 = Sub 1X refresh; MPR[4:3] 01 = 1X refresh; MPR[4:3] 10 = 2X refresh; MPR[4:3] 11 = Reserved

MPR Reads

MPR reads are supported using BL8 and BC4 modes. Burst length on-the-fly is not supported for MPR reads. Data bus inversion (DBI) is not allowed during MPR READ operation; the device will ignore the Read DBI enable setting in MR5 [12] when in MPR mode. READ commands for BC4 are supported with a starting column address of A[2:0] = 000 or 100. After power-up, the content of MPR Page 0 has the default values, which are de-fined in Table 29. MPR page 0 can be rewritten via an MPR WRITE command. The device maintains the default values unless it is rewritten by the DRAM controller. If the DRAM controller does overwrite the default values (Page 0 only), the device will maintain the new values unless re-initialized or there is power loss.

Timing in MPR mode:

- Reads (back-to-back) from Page 0 may use tCCD_S or tCCD_L timing between READ commands
- Reads (back-to-back) from Pages 1, 2, or 3 may not use ^tCCD_S timing between READ commands; ^tCCD_L must be used for timing between READ commands

The following steps are required to use the MPR to read out the contents of a mode reg-ister (MPR Page x, MPRy).

- 1. The DLL must be locked if enabled.
- 2. Precharge all; wait until tRP is satisfied.
- 3. MRS command to MR3[2] = 1 (Enable MPR data flow), MR3[12:11] = MPR read format, and MR3[1:0] MPR page.
 - a. MR3[12:11] MPR read format:
 - 1. 00 = Serial read format
 - 2. 01 = Parallel read format
 - 3. 10 = staggered read format
 - 4. 11 = RFU
 - b. MR3[1:0] MPR page:
 - 1. 00 = MPR Page 0
 - 2. 01 = MPR Page 1
 - 3. 10 = MPR Page 2
 - 4. 11 = MPR Page 3
- 4. tMRD and tMOD must be satisfied.
- 5. Redirect all subsequent READ commands to specific VPR
 6. Issue RD or RDA command.
- - a. BA1 and BA0 indicate MPRx location:
 - 1. 00 = MPR0
 - 2. 01 = MPR1
 - 3. 10 = MPR2
 - 4. 11 = MPR3
 - nly, BC4 OTF not supported. b. A12/BC = 0 or 1; BL8 or BC
 - 1. If BL = 8 and MR01, A12/BC must be set to 1 during MPR READ command
 - c. A2 = burst-type depe
 - rst order fixed at 0, 1, 2, 3, 4, 5, 6, 7 1. BL8: A2 = 0

 - 7th burst order fixed at 0, 1, 2, 3, T, T, T, T
 - 4. BC4: A2 = 1 with burst order fixed at 4, 5, 6, 7, T, T, T,
 - d. A[1:0] = 00, data burst is fixed nibble start at 00.
 - e. Remaining address inputs, including A10, and BG1 and BG0 are "Don't Care."
- 7. After RL = AL + CL, DRAM bursts data from MPRx location; MPR readout format determined by MR3[A12,11,1,0].
- 8. Steps 5 through 7 may be repeated to read additional MPRx locations.
- 9. After the last MPRx READ burst, ^tMPRR must be satisfied prior to exiting.
- 10. Issue MRS command to exit MPR mode; MR3[2] = 0.
- 11. After the tMOD sequence is completed, the DRAM is ready for normal operation from the core (such as ACT).

MPR Readout Format

The MPR read data format can be set to three different settings: serial, parallel, and staggered.

MPR Readout Serial Format

The serial format is required when enabling the MPR function to read out the contents of an MRx, temperature sensor status, and the command address parity error frame. However, data bus calibration locations (four 8-bit registers) can be programmed to read out any of the three formats. The DRAM is required to drive associated strobes with the read data similar to normal operation (such as using MRS preamble settings).

Serial format implies that the same pattern is returned on all DQ lanes, as shown the table below, which uses values programmed into the MPR via [7:0] as 0111 1111.

TABLE 10	7: MPR RE	ADOUT SERIA	AL FORMAT					
Serial	UIO	UI1	UI2	UI3	UI4	UI5	UI6	UI7
x4 Device					NY.			
DQ0	0	1	1	1	VA.	1	1	1
DQ1	0	1	1	1		1	1	1
DQ2	0	1	1	1 /	1	1	1	1
DQ3	0	1	1	N/	1	1	1	1
x8 Device				14.				
DQ0	0	1	1	1	1	1	1	1
DQ1	0	1	1	1	1	1	1	1
DQ2	0	1	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	1	1	1	1	1
DQ3	0	1		1	1	1	1	1
DQ4	0	1		1	1	1	1	1
DQ5	0	1 1	1	1	1	1	1	1
DQ6	0	77	1	1	1	1	1	1
DQ7	0		1	1	1	1	1	1
x16 Device		1						
DQ0	0	1	1	1	1	1	1	1
DQ1	0	1	1	1	1	1	1	1
DQ2	0	1	1	1	1	1	1	1
DQ3	0	1	1	1	1	1	1	1
DQ4	0	1	1	1	1	1	1	1
DQ5	0	1	1	1	1	1	1	1
DQ6	0	1	1	1	1	1	1	1
DQ7	0	1	1	1	1	1	1	1
DQ8	0	1	1	1	1	1	1	1
DQ9	0	1	1	1	1	1	1	1
DQ10	0	1	1	1	1	1	1	1
DQ11	0	1	1	1	1	1	1	1

TABLE 107	7: MPR REA	DOUT SERIA	AL FORMAT	(CONTINUED)			
Serial	UI0	UI1	UI2	UI3	UI4	UI5	UI6	UI7
DQ12	0	1	1	1	1	1	1	1
DQ13	0	1	1	1	1	1	1	1
DQ14	0	1	1	1	1	1	1	1
DQ15	0	1	1	1	1	1	1	1

MPR Readout Parallel Format

Parallel format implies that the MPR data is returned in the first data UI and then repea-ted in the remaining UIs of the burst, as shown in the table below. Data pattern location 0 is the only location used for the parallel format. RD/RDA from data pattern locations 1, 2, and 3 are not allowed with parallel data return mode. In this example, the pattern programmed in the data pattern location 0 is 0111 1111. The x4 configuration only outputs the first four bits (0111 in this example). For the x16 configuration, the same pattern is repeated on both the upper and lower bytes.

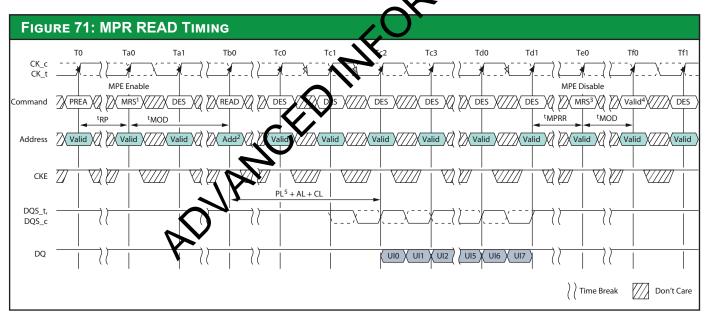
TABLE 10	8: MPR REA	ADOUT - PAR	ALLEL FORM	ЛАТ	2			
Parallel	UI0	UI1	UI2	UI3	UI4	UI5	UI6	UI7
x4 Device				.()				
DQ0	0	0	0	. 6	0	0	0	0
DQ1	1	1	1		1	1	1	1
DQ2	1	1	1	1	1	1	1	1
DQ3	1	1	1	1	1	1	1	1
x8 Device			()					
DQ0	0	0 .	0	0	0	0	0	0
DQ1	1	1,0	1	1	1	1	1	1
DQ2	1		1	1	1	1	1	1
DQ3	1		1	1	1	1	1	1
DQ4	1	M	1	1	1	1	1	1
DQ5	1	1	1	1	1	1	1	1
DQ6	1	1	1	1	1	1	1	1
DQ7	1	1	1	1	1	1	1	1
x16 Device								
DQ0	0	0	0	0	0	0	0	0
DQ1	1	1	1	1	1	1	1	1
DQ2	1	1	1	1	1	1	1	1
DQ3	1	1	1	1	1	1	1	1
DQ4	1	1	1	1	1	1	1	1
DQ5	1	1	1	1	1	1	1	1
DQ6	1	1	1	1	1	1	1	1
DQ7	1	1	1	1	1	1	1	1

TABLE 108	8: MPR REA	DOUT - PAR	ALLEL FORM	мат (Сонтіі	NUED)			
Parallel	UI0	UI1	UI2	UI3	UI4	UI5	UI6	UI7
DQ8	0	0	0	0	0	0	0	0
DQ9	1	1	1	1	1	1	1	1
DQ10	1	1	1	1	1	1	1	1
DQ11	1	1	1	1	1	1	1	1
DQ12	1	1	1	1	1	1	1	1
DQ13	1	1	1	1	1	1	1	1
DQ14	1	1	1	1	1	1	1	1
DQ15	1	1	1	1	1	1	1	1

MPR Readout Staggered Format

MPR Readout Staggered Format

Staggered format of data return is defined as the staggering of the MPR data cross the lanes. In this mode, an RD/ RDA command is issued to a specific data pattern location and then the talk is returned on the DQ from each of the different data pattern locations.



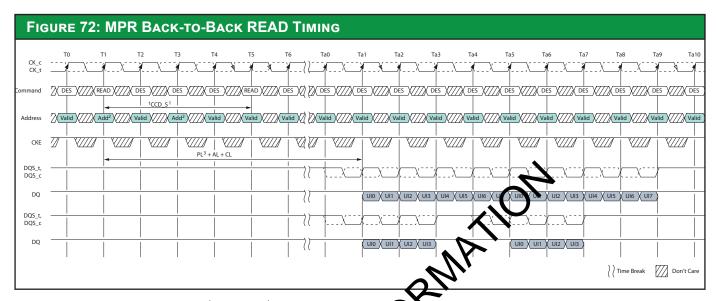
A read example to MPR0 is shown below.

TABLE 109: MP	R READOUT STAG	GERED FORMAT			
x8 READ MPF	RO Command	x16 READ MPR	0 Command	x16 READ MP	R0 Command
Stagger	UI[7:0]	Stagger	UI[7:0]	Stagger	UI[7:0]
DQ0	MPR0	DQ0	MPR0	DQ8	MPR0
DQ1	MPR1	DQ1	MPR1	DQ9	MPR1
DQ2	MPR2	DQ2	MPR2	DQ10	MPR2
DQ3	MPR3	DQ3	MPR3	DQ11	MPR3
DQ4	MPR0	DQ4	MPR0	DQ12	MPR0
DQ5	MPR1	DQ5	MPR1	DO13	MPR1
DQ6	MPR2	DQ6	MPR2	C 244	MPR2
DQ7	MPR3	DQ7	MPR3	Q15	MPR3

MPR READ Waveforms

The following waveforms show MPR

- Notes: 1. ${}^{t}CCD_{S} = 4tCK$, Read Preamble = $1{}^{t}CK$.
 - 2. Address setting:

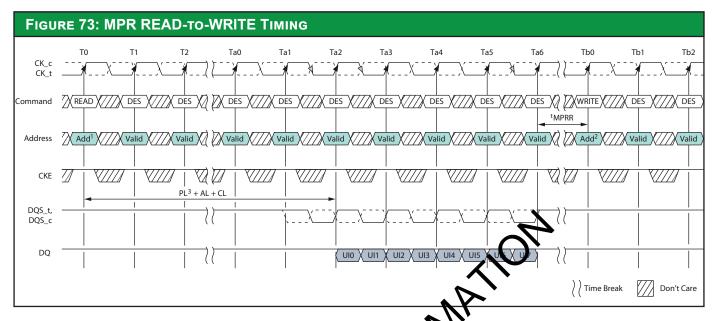

A[1:0] = 00b (data burst order is fixed starting at nibble, always 00b here) A2 = 0b (for BL = 8, burst order is fixed at 0, 1, 2, 3, 4, 5, 6, 7)

BA1 and BA0 indicate the MPR location

A10 and other address pins are "Don't Care," including BG1 and BG0. A12 is "Don't Care" when MR0 A[1:0] = 00 or 10 and must be 1b when MR0 A[1:0] = 01

- 3. Multipurpose registers read/write disable (MR3 A2 = 0).
- 4. Continue with regular DRAM command.
- Parity latency (PL) is added to data output delay when CA parity latency mode is enabled.

- Notes: 1. ^tCCD_S = 4^tCK, Read Preamble
 - 2. 2. Address setting:


2. Address setting:
A[1:0] = 00b (data burst order is fixed starting at nibble, always 00b here)
A2 = 0b (for BL = 8, burst order is fixed at 0, 1, 2, 3, 4, 5, 6, 7; for BC = 4, burst order is fixed at 0, 1, 2, 3, T, T, T,

BA1 and BA0 indicate the MPR location

A10 and other add pins are "Don't Care," including BG1 and BG0. A12 is "Don't Care" when MR0A[[0] = 00 or 10 and must be 1b when MR0 A[1:0] = 01

3. Parity later cy (RLY is added to data output delay when CA parity latency mode is ena-

Notes: 1. Address setting:

A[1:0] = 00b (data burst order is fixed serting at nibble, always 00b here)

A2 = 0b (for BL = 8, burst order is fix a at 0, 1, 2, 3, 4, 5, 6, 7)

BA1 and BA0 indicate the MPR location

A10 and other address pins a Don't Care," including BG1 and BG0. A12 is "Don't

Care" when MR0 A[1:0] = 00 and must be 1b when MR0 A[1:0] = 01

2. Address setting:

BA1 and BA0 indicate the MPR location

A[7:0] = data for MPR

BA1 and BA0 indicate the MPR location

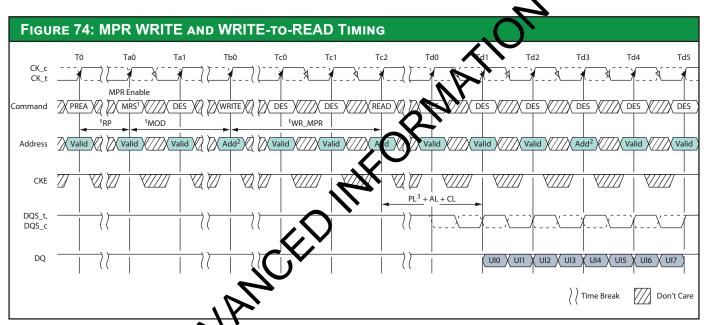
A10 and other address pins are "Don't Care"

3. Parity latency (L) is added to data output delay when CA parity latency mode is enabled.

MPR Writes

MPR access mode allows 8-bit writes to the MPR location using the address bus A[7:0]. Data bus inversion (DBI) is not allowed during MPR WRITE operation. The DRAM will maintain the new written values unless re-initialized or there is power loss.

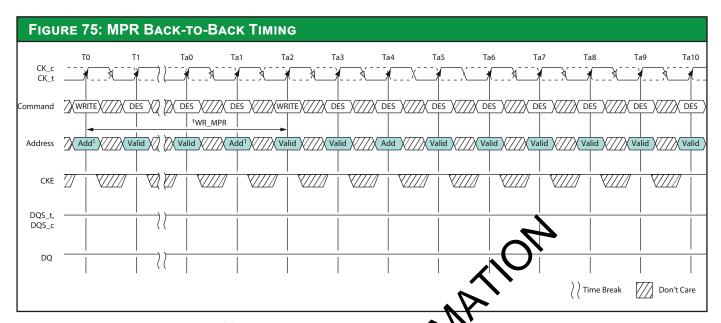
The following steps are required to use the MPR to write to mode register MPR Page 0, MPRy).


- 1. The DLL must be locked if enabled.
- 2. Precharge all; wait until tRP is satisfied.
- 3. MRS command to MR3[2] = 1 (enable MPR data flow) and MR3[1:0] = 00 (MPR Page 0); 01, 10, and 11 are not allowed.
- 4. tMRD and tMOD must be satisfied.
- 5. Redirect all subsequent WRITE commands to specific MPRx location.
- 6. Issue WR or WRA command:
 - a. BA1 and BA0 indicate MPRx location
 - 1. 00 = MPR0
 - 2. 01 = MPR1
 - 3. 10 = MPR2
 - 4. 11 = MPR3

- b. A[7:0] = data for MPR Page 0, mapped A[7:0] to UI[7:0].
- c. Remaining address inputs, including A10, and BG1 and BG0 are "Don't Care."
- 7. tWR_MPR must be satisfied to complete MPR WRITE.
- 8. Steps 5 through 7 may be repeated to write additional MPRx locations.
- 9. After the last MPRx WRITE, ^tMPRR must be satisfied prior to exiting.
- 10. Issue MRS command to exit MPR mode; MR3[2] = 0.
- 11. When the ^tMOD sequence is completed, the DRAM is ready for normal operation from the core (such as ACT).

MPR WRITES Waveforms

The following waveforms show MPR write accesses.


Notes: Multipurpose registers read/write enable (MR3 A2 = 1).

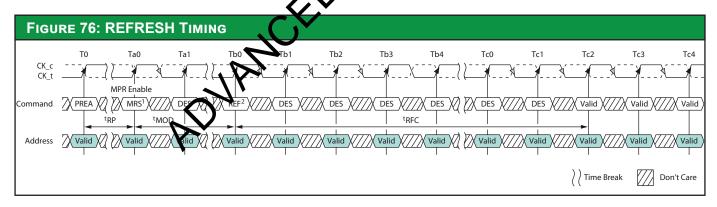
ddress setting:

BA1 and BA0 indicate the MPR location A10 and other address pins are "Don't Care"

3. Parity latency (PL) is added to data output delay when CA parity latency mode is enabled.

ST9D4512M40DBG0

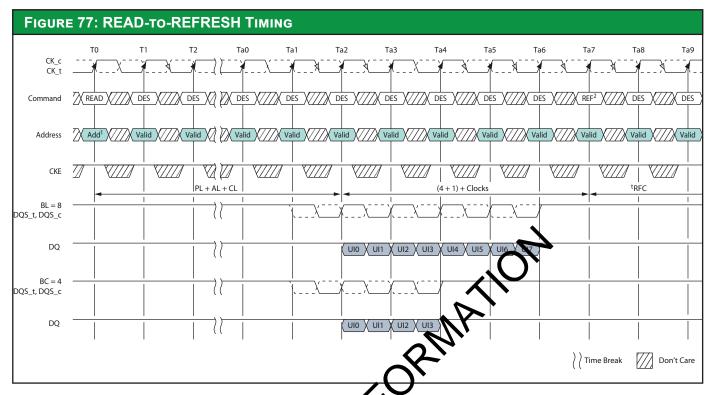
Notes: 1. Address setting:


BA1 and BA0 indicate the MPR locator

A[7:0] = data for MPR

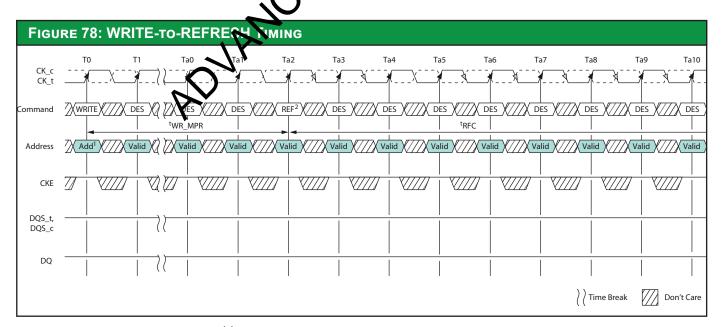
A10 and other address pins are Oon t Care

MPR REFRESH Waveforms


The following waveforms show MPR accesses interaction with refreshes.

Notes: 1. Multipurpose registers read/write enable (MR3 A2 = 1). Redirect all subsequent read and writes to MPR locations.

2. 1x refresh is only allowed when MPR mode is enabled.


Notes: 1. Address setting:

A[1:0] = 00b (data burst code is fixed starting at nibble, alw A2 = 0b (for BL = 8, burst older is fixed at 0, 1, 2, 3, 4, 5, 6, 7) BA1 and BA0 indicate the MPR location fixed starting at nibble, always 00b here)

pins are "Don't Care," including BG1 and BG0. A12 is "Don't A10 and other add

[0] = 00 or 10, and must be 1b when MR0 A[1:0] = 01 Care" when MK0.A

allowed when MPR mode is enabled. 2. 1x refresh is only

Notes: 1. Address setting:

BA1 and BA0 indicate the MPR location

A[7:0] = data for MPR

A10 and other address pins are "Don't Care"

2. 1x refresh is only allowed when MPR mode is enabled. 190

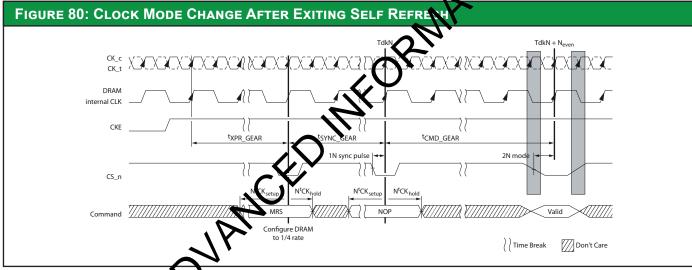
Gear-Down Mode

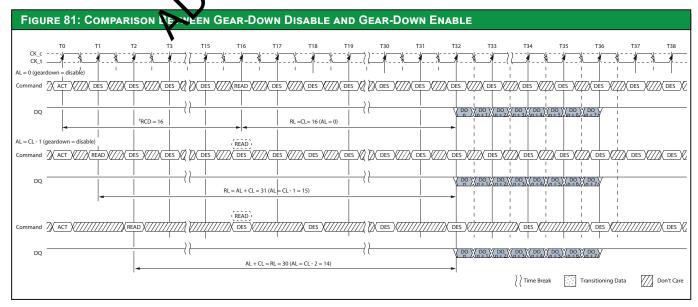
The DDR4 SDRAM defaults in 1/2 rate (1N) clock mode and uses a low-frequency MRS command (the MRS command has relaxed setup and hold) followed by a sync pulse (first CS pulse after MRS setting) to align the proper clock edge for operating the control lines CS_n, CKE, and ODT when in 1/4 rate (2N) mode. Gear-down mode is only supported at DDR4-2666 and faster. For operation in 1/2 rate mode, neither an MRS command or a sync pulse is required. Gear-down mode may only be entered during initialization or self refresh exit and may only be exited during self refresh exit. The general sequence for operation in 1/4 rate during initialization is as follows:

- 1. The device defaults to a 1N mode internal clock at power-up/reset.
- 2. Assertion of reset.
- 3. Assertion of CKE enables the DRAM.
- 4. MRS is accessed with a low-frequency N \times ^tCK gear-down MRS command. (NtCK static MRS command is qualified by 1N CS_n.)
- 5. The memory controller will send a 1N sync pulse with a low-frequency N × ^tCK NOP command. ^tSYNC_GEAR is an even number of clocks. The sync pulse is on an even edge clock boundary from the MRS command.
- 6. Initialization sequence, including the expiration of ^tDLLK and ^tZQinit, start In N mode after ^tCMD_GEAR from 1N sync pulse.

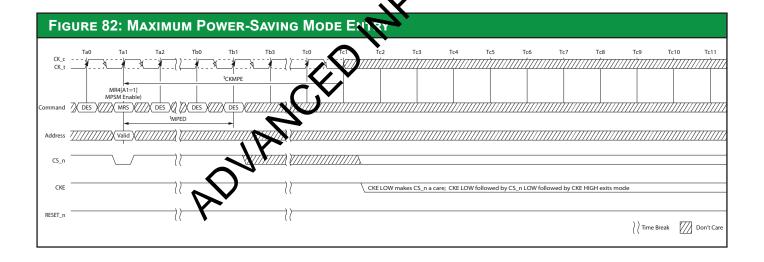
The device resets to 1N gear-down mode after entering self refresh. The general sequence for operation in gear-down after self refresh exit is as follows:

- 1. MRS is set to 1, via MR3[3], with a low-frequency N × ^tCK gear-down MRS command
 - a. The N^tCK static MRS command is qualified by 1N CS_p_vNch meets ^tXS or ^tXS ABORT.
 - b. Only a REFRESH command may be issued to the IRAM before the N^tCK static MRS command.
- 2. The DRAM controller sends a 1N sync pulse with a law frequency N × tCK NOP command.
 - a. tSYNC GEAR is an even number of clocks
 - b. The sync pulse is on even edge clock boundary from the MRS command.
- 3. A valid command not requiring locked DLX is available in 2N mode after ^tCMD_GEAR from the 1N sync pulse.
 - a. A valid command requiring looked NLL is available in 2N mode after tXSDLL or ^tDLLK from the 1N sync puls
- 4. If operation is in 1N mode after Suf Afresh exit, N × ^tCK MRS command or sync pulse is not required during self refresh exit. The minimum exit delay to the first valid command is tXS, or ^tXS_ABORT.


The DRAM may be changed from 2N to 1N by entering self refresh mode, which will reset to 1N mode. Changing from 2N to by any other means can result in loss of data and make operation of the DRAM incertain.


When operating in 2N gear down mode, the following MR settings apply:

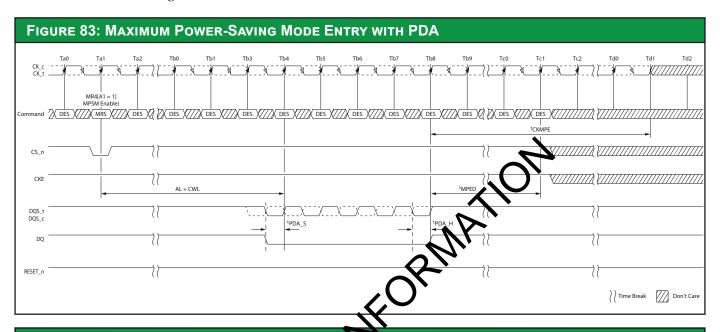
- CAS latency (MR0[6:4,2]): Even number of clocks
- Write recovery and read to precharge (MR0[11:9]): Even number of clocks
- Additive latency (MR1[4:3]): CL 2
- CAS WRITE latency (MR2 A[5:3]): Even number of clocks
- CS to command/address latency mode (MR4[8:6]): Even number of clocks
- CA parity latency mode (MR5[2:0]): Even number of clocks

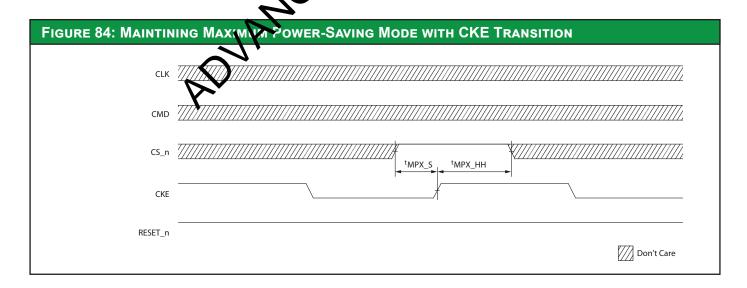

Maximum Power-Saving Mode

Maximum power-saving mode provides the lowest power mode where data retention is not required. When the device is in the maximum power-saving mode, it does not maintain data retention or respond to any external command, except the MAXIMUM POWER SAVING MODE EXIT command and during the assertion of RESET_n signal LOW. This mode is more like a "hibernate mode" than a typical power-saving mode. The intent is to be able to park the DRAM at a very low-power state; the device can be switched to an active state via the per-DRAM addressability (PDA) mode.

Maximum Power-Saving Mode Entry

Maximum power-saving mode is entered through an MRS command. For devices with shared control/address signals, a single DRAM device can be entered into the maximum power-saving mode using the per-DRAM addressability MRS command. Large CS_n hold time to CKE upon the mode exit could cause DRAM malfunction; as a result, CA parity, CAL, and gear-down modes must be disabled prior to the maximum powersaving mode entry MRS command.

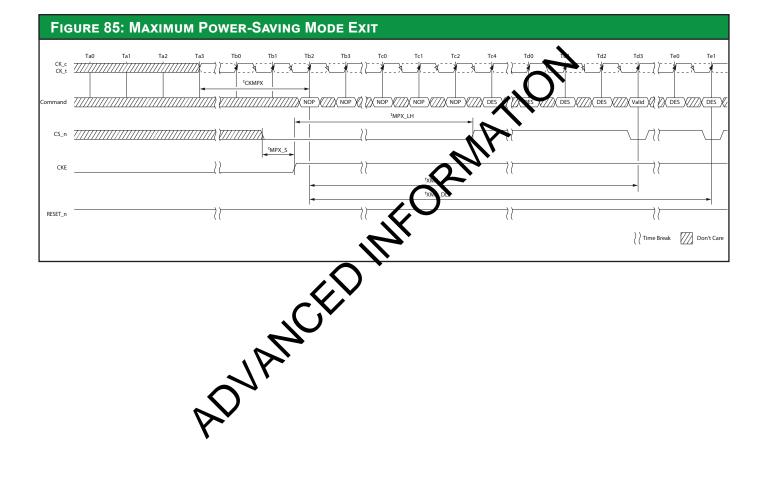

The MRS command may use both address and DQ information, as defined in the Per-DRAM Addressability section. As illustrated in the figure below, after ^tMPED from the mode entry MRS command, the DRAM is not responsive to any input signals except CKE, CS_n, and RESET_n. All other inputs are disabled (external input signals may become High-Z). The system will provide a valid clock until ^tCKE Ph expires, at which time clock inputs (CK) should be disabled (external clock signals may become High-Z).


Maximum Power-Saving Mode Entry in PDA

The sequence and timing required for the maximum power-saving mode with the per-DRAM addressability enabled is illustrated in the figure below.

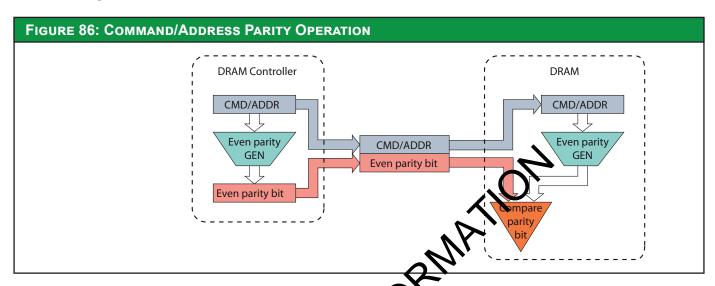
CKE Transition During Maximum Power-Saving Mode

The following figure shows how to maintain maximum power-saving mode even though the CKE input may toggle. To prevent the device from exiting the mode, \$\sigma_n\$ should be HIGH at the CKE LOW-to-HIGH edge, with appropriate setup (\text{tMPX_S}) and hold (\text{tMPX_H}) timings.



Maximum Power-Saving Mode Exit

To exit the maximum power-saving mode, CS_n should be LOW at the CKE LOW-to-HIGH transition, with appropriate setup (tMPX_S) and hold (tMPX_LH) timings, as shown in the figure below.


Because the clock receivers (CK_t, CK_c) are disabled during this mode, CS_n = LOW is captured by the rising edge of the CKE signal. If the CS_n signal level is detected LOW, the DRAM clears the maximum power-saving mode MRS bit and begins the exit procedure from this mode. The external clock must be restarted and be stable by tCKMPX before the device can exit the maximum power-saving mode. During the exit time (tXMP), only NOP and DES commands are allowed: NOP during tMPX_LH and DES the remainder of tXMP. After tXMP expires, valid commands not requiring a locked DLL are allowed; after tXMP_DLL expires, valid commands requiring a locked DLL are allowed.

Command/Address Parity

Command/address (CA) parity takes the CA parity signal (PAR) input carrying the parity bit for the generated address and commands signals and matches it to the internally generated parity from the captured address and commands signals.

CA parity is disabled or enabled via an MRS command. If CA parity is enabled by programming a non-zero value to CA parity latency in the MR, the DRAM will ensure that

there is no parity error before executing commands. There is an additional delay required for executing the commands versus when parity is disabled. The delay is programmed in the MR when CA parity is enabled (parity latency) and applied to all commands which are registered by CS_n (rising edge of CK_t and falling CS_n). The command is held for the time of the parity latency (PL) before it is executed inside the device. The command captured by the input clock has an internal delay before executing and is determined with PL. When CA parity is enabled, only DES are allowed between valid commands. ARR will go active when the DRAM detects a CA parity error.

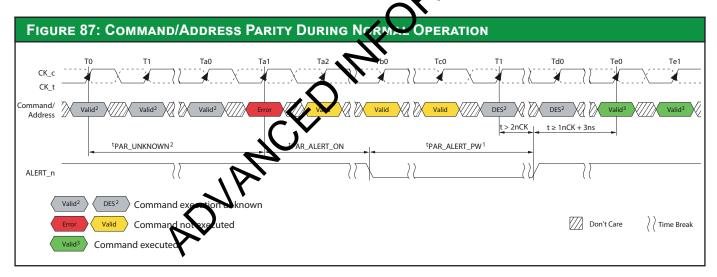
CA parity covers ACT_n, RAS_n/A16, CAS_n/A15, WE_n/A14, the address bus including bank address and bank group bits, and C[2:0] on 3DS devices: the control signals CKE, ODT, and CS_n are not covered. For example, for a 4Gb x4 monolithic device, parity it computed across BG[1:0], BA[1:0], A16/RAS_n, A15/CAS_n, A14/WE_n, A[13:0], and ACT_n. The DRAM treats any unused address pins internally as zeros; for example, if a common die has stacked pins but the device it used in a monolithic application, then the address pins used for stacking and not connected are treated internally as zeros.

The convention for parity is even parity; for example, valid parity is defined as an even number of ones across the inputs used for parity computation combined with the parity signal. In other words, the parity bit is chosen so that the total number of ones in the transmitted signal, including the parity bit, is even.

If a DRAM device detects a CA parity error in any command qualified by CS_n, it will perform the following steps:

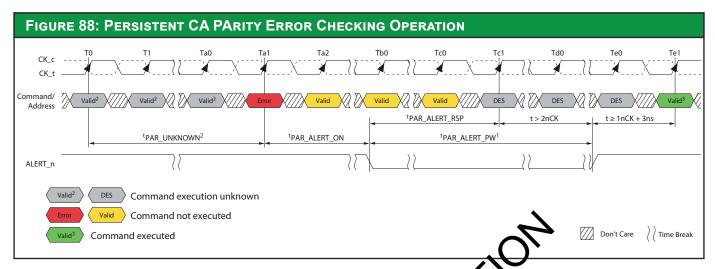
- 1. Ignore the erroneous command. Commands in the MAX N*n*CK window ([†]PAR_UNKNOWN) prior to the erroneous command are not guaranteed to be executed. When a READ command in this NnCK window is not executed, the device does not activate DQS outputs.
- 2. Log the error by storing the erroneous command and address bits in the MPR error log.
- 3. Set the parity error status bit in the mode register to 1. The parity error status bit must be set before the ALERT_n signal is released by the DRAM (that is, tPAR_ALERT_ON + tPAR_ALERT_PW (MIN)).
- 4. Assert the ALERT_n signal to the host (ALERT_n is active LOW) within ^tPAR_ALERT_ON time.
- 5. Wait for all in-progress commands to complete. These commands were received ^tPAR_UNKOWN before the erroneous command.
- 6. Wait for ^tRAS (MIN) before closing all the open pages. The DRAM is not executing any commands during the window defined by (^tPAR_ALERT_ON + ^tPAR_ALERT_PW).

- 7. After tPAR_ALERT_PW (MIN) has been satisfied, the device may de-assert ALERT_n.
 - a. When the device is returned to a known precharged state, ALERT_n is allowed to be de-asserted.
- 8. After (^tPAR_ALERT_PW (MAX)) the DRAM is ready to accept commands for normal operation. Parity latency will be in effect; however, parity checking will not resume until the memory controller has cleared the parity error status bit by writing a zero. The DRAM will execute any erroneous commands until the bit is cleared; unless persistent mode is enabled.
- The DRAM should have only DES commands issued around ALERT_n going HIGH such that at least 3 clocks prior and 1 clock plus 3ns after the release of ALERT_n.
- It is possible that the device might have ignored a REFRESH command during
 ^tPAR_ALERT_PW or the RE-FRESH command is the first erroneous frame, so it is recommended that extra REFRESH cycles be issued, as needed.
- The parity error status bit may be read anytime after ^tPAR_ALERT_ON + ^tPAR_ALERT_PW to determine which DRAM had the error. The device maintains the error log for the first erroneous command until the parity error status bit is reset to a zero or a second CA parity occurs prior to resetting.

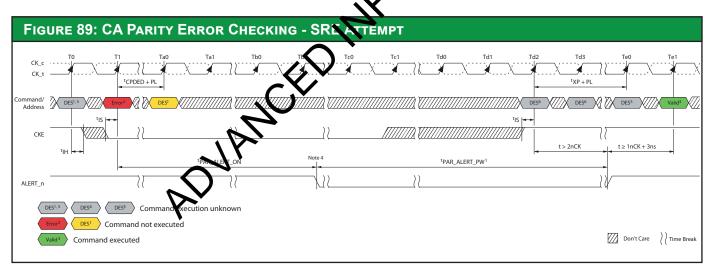

The mode register for the CA parity error is defined as follows: CA parity latency bits are write only, the parity error status bit is read/write, and error logs are read-only bits. The DRAM controller can only program the parity error status bit to zero. If the DRAM controller illegally attempts to write a 1 to the parity error status bit, the DRAM can not be certain that parity will be checked; the DRAM may opt to block the DRAM controller from writing a 1 to the parity error status bit.

The device supports persistent parity error mode. This mode is say bled by setting MR5[9] = 1; when enabled, CA parity resumes checking after the ALERT_n is de-asserted, even if the parity error status bit remains a 1. If multiple errors occur before the error status bit is cleared the error tog in MPR Page 1 should be treated as "Don't Care." In persistent parity error mode the ALERT_n pulse will be assured and de-asserted by the DRAM as defined with the MIN and MAX value ^tPAR_ALERT_PW. The DRAM controller must issue DESELECT commands once it detects the ALERT_n signal, this response time is defined as "FAR_ALERT_RSP. The following figures capture the flow of events on the CA bus and the ALERT_n signal.

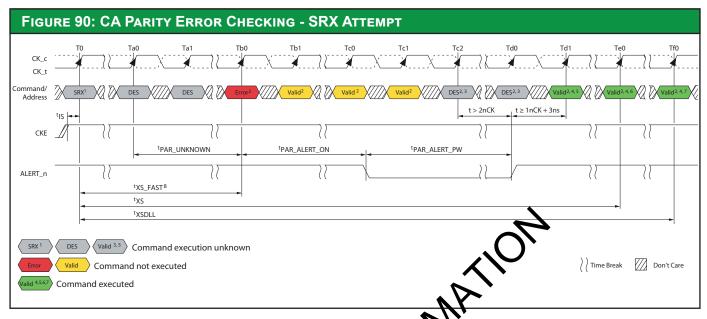
TABLE 110: MODE	REGISTER SETTING FO	R CA PARITY		
CA Parity Latency MR5[2:0] ¹	Applicable Speed Bin	Parity Error Status	Parity Persistent Mode	Erroneous CA Frame
000 = Disabled	N/A			
001 = 4 clocks	1600, 1866, 2133			
010 = 5 clocks	2400			C[2:0], ACT_n, BG1,
011 = 6 clocks	2666	MR5 [4] 0 = Clear	MR5 [9] 0 = DisabledMR5	BG0, BA[1:0], PAR,
100 = 8 clocks	2933, 3200	MR5 [4] 1 = Error	[9] 1 = Enabled	A17, A16/RAS_n, A15/ CAS_n, A14/WE_n,
101 = Reserved	RFU			A[13:0]
110 = Reserved	RFU			
111 = Reserved	RFU]	4	

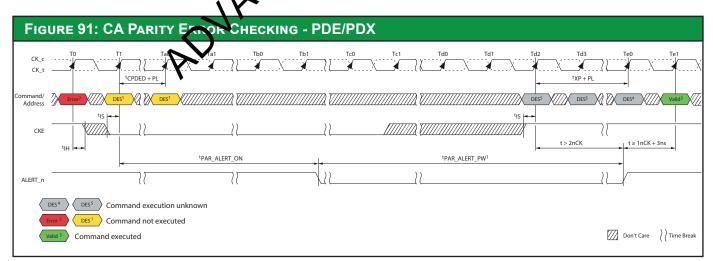

- Notes: 1. Parity latency is applied to all commands.
 - 2. 2. Parity latency can be changed only from a CA carrix disabled state; for example, a direct change from PL = 3 to PL = 4 is not allowed. The correct sequence is PL = 3 to disabled
 - 3. 3. Parity latency is applied to WRITE atency. WRITE latency = AL + CWL + PL. READ latency = AL + CL + PL.

Notes:

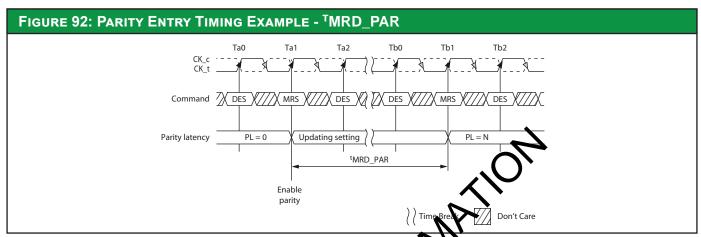

- 1. DRAM is emptying queues. Precharge all and parity checking are off until parity error status bit is cleared.
- 2. Command execution is unknown; the corresponding DRAM internal state change may or may not occur. The DRAM controller should consider both cases and make sure that the command sequence meets the specifications.
- 3. Normal operation with parity latency (CA parity persistent error mode disabled). Parity checking is off until parity error status bit is cleared.

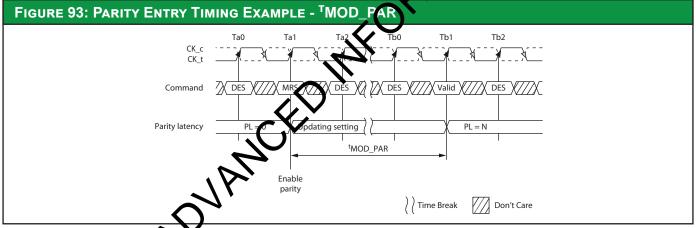
Notes:

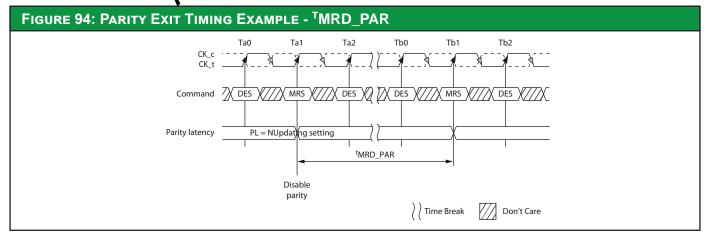

- DRAM is emptying queues. Precharge all and parity check re-enable finished by [†]PAR_ALERT_PW.
- 2. 2. Command execution is unknown; the corresponding DRAM internal state change may or may not occur. The DRAM controller should consider both cases and make sure that the command sequence meets the specifications.
- 3. 3. Normal operation with parity late by and parity checking (CA parity persistent error mode enabled).


Notes:

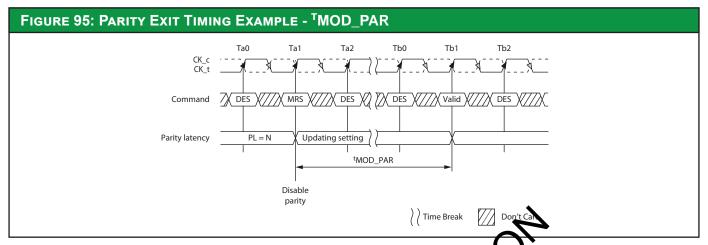
- 1. Only DESELECT command is allowed.
- 2. SELF REFRESH command error. The DRAM masks the intended SRE command and enters precharge power-down.
- 3. Normal operation with parity latency (CA parity persistent error mode disabled). Parity checking is off until the parity error status bit cleared.
- 4. The controller cannot disable the clock until it has been capable of detecting a possible CA parity error.
- 5. Command execution is unknown; the corresponding DRAM internal state change may or may not occur. The DRAM controller should consider both cases and make sure that the command sequence meets the specifications.
- 6. Only a DESELECT command is allowed; CKE may go HIGH prior to Tc2 as long as DES commands are issued.

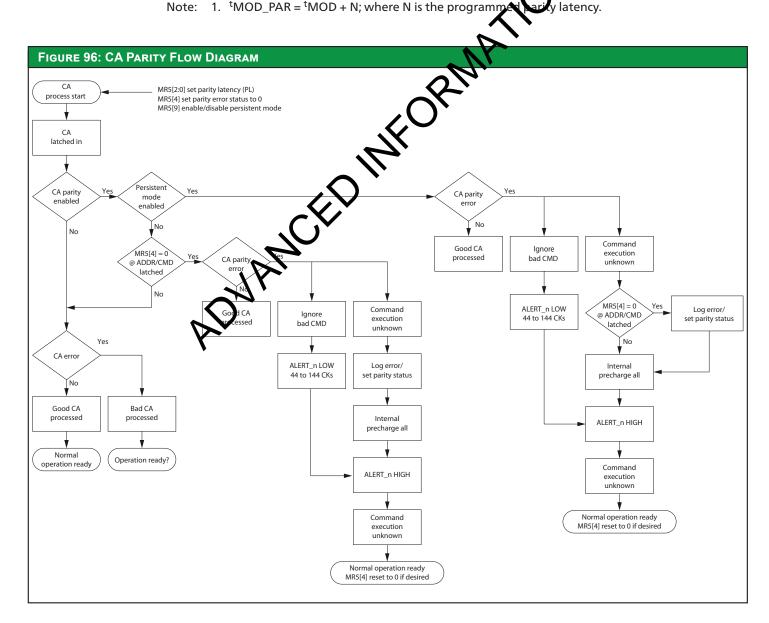

- Notes: 1. Self refresh abort = disable: MR4 [9] =
 - 2. Input commands are bounded by ^tX ${}^{t}\!\!X$ S, tXS_ABORT, and ${}^{t}\!\!X$ S_FAST timing.
 - 3. Command execution is unknow; the corresponding DRAM internal state change may or may not occur. The DRAM controller should controller specifications. wher should consider both cases and make sure that
 - atency (CA parity persistent error mode disabled). Parity 4. Normal operation with o checking off until parity error status bit cleared.
 - 5. Only an MRS (limited to those described in the SELF REFRESH Operation section), ZQCS, or ZQCL command flowed.
 - 6. Valid comm not requiring a locked DLL.
 - 7. Valid comm and requiring a locked DLL.
 - This fig hows the case from which the error occurred after ^tXS_FAST. An error may cunafter tXS_ABORT and tXS.


- Notes: 1. Only DESELECT command is allowed.
 - 2. Error could be precharge or activate.
 - 3. Normal operation with parity latency (CA parity persistent error mode disabled). Parity checking is off until parity error status bit cleared.


- 4. Command execution is unknown; the corresponding DRAM internal state change may or may not occur. The DRAM controller should consider both cases and make sure that the command sequence meets the specifications.
- 5. Only a DESELECT command is allowed; CKE may go HIGH prior to Td2 as long as DES commands are issued.

Note: 1. ^tMRD_PAR = ^tMOD + N; where N is the programmed parity latency.


Note $\mathsf{L}^\mathsf{t}\mathsf{MOD}_\mathsf{PAR} = \mathsf{L}^\mathsf{t}\mathsf{MOD} + \mathsf{N}$; where N is the programmed parity latency.


Note: 1. ${}^{t}MRD_{PAR} = {}^{t}MOD + N$; where N is the programmed parity latency.

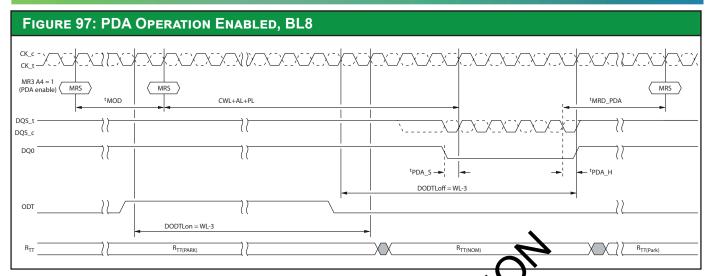
Command/Address Parity

Note: 1. ${}^{t}MOD_{PAR} = {}^{t}MOD + N$; where N is the programm latency.

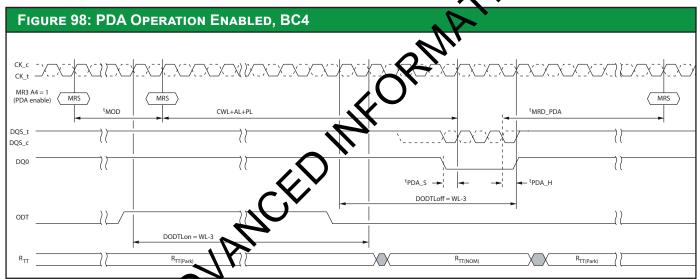
Per-DRAM Addressability

DDR4 allows programmability of a single, specific DRAM on a rank. As an example, this feature can be used to program different ODT or V_{REF} values on each DRAM on a given rank. Because per-DRAM addressability (PDA) mode may be used to program optimal V_{REF} for the DRAM, the data set up for first DQ0 transfer or the hold time for the last DQ0 transfer cannot be guaranteed. The DRAM may sample DQ0 on either the first falling or second rising DQS transfer edge. This supports a common implementation between BC4 and BL8 modes on the DRAM. The DRAM controller is required to drive DQ0 to a stable LOW or HIGH state during the length of the data transfer for BC4 and BL8

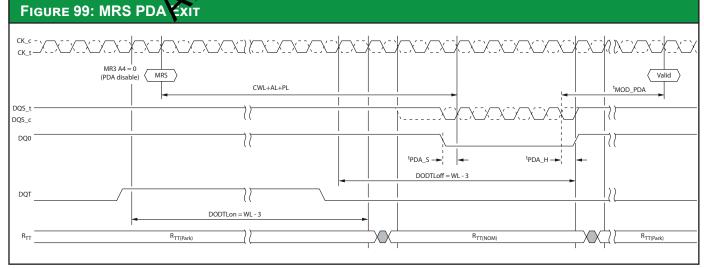
cases.


- 1. Before entering PDA mode, write leveling is required.
 - BL8 or BC4 may be used.
- 2. Before entering PDA mode, the following MR settings are possible:
 - $R_{TT(Park)}$ MR5 A[8:6] = Enable
 - R_{TT(NOM)} MR1 A[10:8] = Enable
- 3. Enable PDA mode using MR3 [4] = 1. (The default programed value of MI3 [4] = 0.)
- 4. In PDA mode, all MRS commands are qualified with DQ0. The device captures DQ0 by using DQS signals. If the value on DQ0 is LOW, the DRAM executes the MRS command. If the value on DQ0 is HIGH, the DRAM ignores the MRS command. The controller can choose to drive all the DQ bits.
- 5. Program the desired DRAM and mode registers using the MRS and and DQ0.
- 6. In PDA mode, only MRS commands are allowed.
- 7. The MODE REGISTER SET command cycle time in PDA roote AL + CWL + BL/2 0.5tCK + ^tMRD_PDA + PL, is required to complete the WRITE operation to the made register and is the minimum time required between two MRS commands.
- 8. Remove the device from PDA mode by setting MR3N = 0. (This command requires DQ0 = 0.)

Note: Removing the device from PDA mode will require programming the entire MR3 when the MRS command is issued. This may impact some PDA values programmed within a rank as the EXIT command is sent to the rank. To avoid such a case, the PDA enable/disable control bit is located in a mode register that does not have any PDA mode controls.

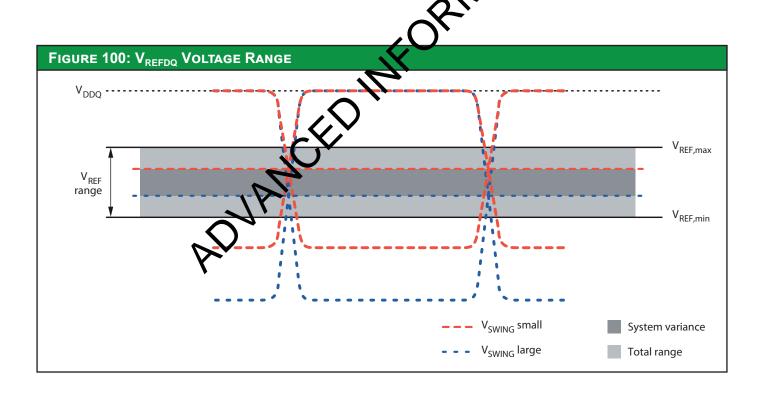

In PDA mode, the device captures DQ0 tsin) DQS signals the same as in a normal WRITE operation; however, dynamic ODT is not supported. Extra case is required for the ODT setting. If $R_{TT(NOM)}$ MR1 [10:8] = enable, device data termination needs to be convolled by the ODT pin, and applies the same timing parameters (defined below).

Symbol	Parameter
DODTLon	Direct ODT turnon latency
DODTLoff	Direct ODT turn off latency
^t ADC	R _{TT} change timing skew
^t AONAS	Asynchronous R _{TT(NOM)} turn-on delay
^t AOFAS	Asynchronous R _{TT(NOM)} turn-off delay



Note: 1. $R_{TT(Park)} = Enable$; $R_{TT(NOM)} = Enable$; WRITE preactible set = 2^t CK; and DLL = On.

Note: $TT(Park) = Enable; R_{TT(NOM)} = Enable; WRITE preamble set = 2^tCK; and DLL = On.$

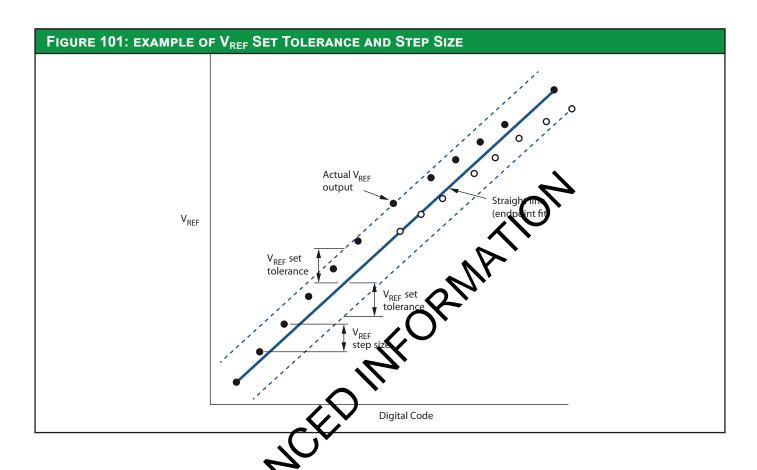

Notes: 1. $R_{TT(Park)} = Enable$; $R_{TT(NOM)} = Enable$; WRITE preamble set = 2^tCK ; and DLL = On.

VREFDQ Calibration

The V_{REFDQ} level, which is used by the DRAM DQ input receivers, is internally generated. The DRAM V_{REFDQ} does not have a default value upon power-up and must be set to the desired value, usually via V_{REFDQ} calibration mode. If PDA or PPR modes are used prior to V_{REFDQ} calibration, V_{REFDQ} should initially be set at the midpoint between the $V_{DD,max}$, and the LOW as determined by the driver and ODT termination selected with wide voltage swing on the input levels and setup and hold times of approximately 0.75UI. The memory controller is responsible for V_{REFDQ} calibration to determine the best internal V_{REFDQ} level. The V_{REFDQ} calibration is enabled/disabled via MR6[7], MR6[6] selects Range 1 (60% to 92.5% of V_{DDQ}) or Range 2 (45% to 77.5% of V_{DDQ}), and an MRS protocol using MR6[5:0] to adjust the V_{REFDQ} level up and down. MR6[6:0] bits can be altered using the MRS command if MR6[7] is disabled. The DRAM controller will likely use a series of writes and reads in conjunction with V_{REFDQ} adjustments to obtain the best V_{REFDQ} , which in turn optimizes the data eye.

The internal V_{REFDQ} specification parameters are voltage range, step size, V_{REF} step time, V_{REF} full step time, and V_{REF} valid level. The voltage operating range specifies the minimum required V_{REF} setting range for DDR4 SDRAM devices. The minimum range is defined by $V_{REFDQ,min}$ and $V_{REFDQ,max}$. As noted, a calibration sequence, determined by the DRAM controller, should be performed to adjust V_{REFDQ} and optimize the timing and voltage margin of the DRAM data input receivers. The internal V_{REFDQ} voltage value may not be exactly within the voltage range setting coupled with the V_{REF} set tolerance; the device must be calibrated to the correct internal V_{REFDQ} voltage.

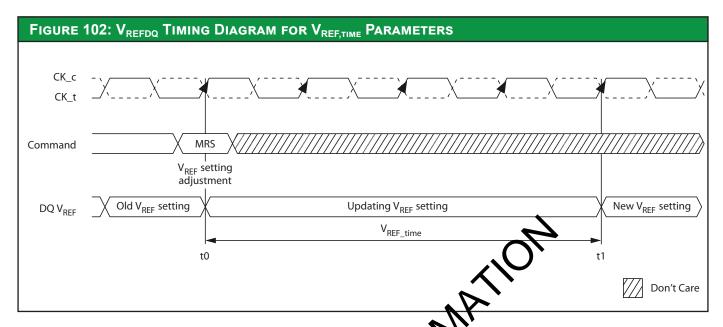
MR6[5:0]	Range 1 MR6[6] 0	Range 2 MR6[6] 1	MR6[5:0]	Range 1 MR6[6] 0	Range 2 MR6[6] 1
00 0000	60.00%	45.00%	01 1010	76.90%	61.90%
00 0001	60.65%	45.65%	01 1011	77.55%	62.55%
00 0010	61.30%	46.30%	01 1100	78.20%	63.20%
00 0011	61.95%	46.95%	01 1101	78.85%	63.85%
00 0100	62.60%	47.60%	01 1110	79.50%	64.50%
00 0101	63.25%	48.25%	01 1111	80.15%	65.15%
00 0110	63.90%	48.90%	10 0000	80.80%	65.80%
00 0111	64.55%	49.55%	10 0001	81.45%	66.45%
00 1000	65.20%	50.20%	10 0010	82.10%	67.10%
00 1001	65.85%	50.85%	10 0011	82.75%	67.75%
00 1010	66.50%	51.50%	10 0100	83.40%	68.40%
00 1011	67.15.%	52.15%	10 0101	84.05%	69.05%
00 1100	67.80%	52.80%	10 0110	84.70%	69.70%
00 1101	68.45%	53.45%	10 0111	85.35%	70.35%
00 1110	69.10%	54.10%	10 1000	86.00%	71.00%
00 1111	69.75%	54.75%	10 100	86.65%	71.65%
01 0000	70.40%	55.40%	0 1010	87.30%	72.30%
01 0001	71.05%	56.05%	10 1011	87.95%	72.95%
01 0010	71.70%	56.70%	10 1100	88.60%	73.60%
01 0011	72.35%	57.35%	10 1101	89.25%	74.25%
01 0100	73.00%	52.00%	10 1110	89.90%	74.90%
01 0101	73.65%	5 8.6 %	10 1111	90.55%	75.55%
01 0110	74.30%	9.30%	11 0000	91.20%	76.20%
01 0111	74.95%	59.95%	11 0001	91.85%	76.85%
01 1000	75.60%	60.60%	11 0010	92.50%	77.50%
01 1001	76.25%	61.25%	11 0011 to 11	1111 = Reserved	


V_{REFDQ} Step Size

The V_{REF} step size is defined as the step size between adjacent steps. V_{REF} step size ranges from 0.5% V_{DDQ} to 0.8% V_{DDQ} . However, for a given design, the device has one value for V_{REF} step size that falls within the range.

The V_{REF} set tolerance is the variation in the V_{REF} voltage from the ideal setting. This accounts for accumulated error over multiple steps. There are two ranges for V_{REF} set tolerance uncertainty. The range of V_{REF} set tolerance uncertainty is a function of number of steps n.

The V_{REF} set tolerance is measured with respect to the ideal line, which is based on the MIN and MAX V_{REF} value endpoints for a specified range. The internal V_{REFDQ} voltage value may not be exactly within the voltage range setting coupled with the V_{REF} set tolerance; the device must be calibrated to the correct internal V_{REFDQ} voltage.


V_{REFDQ} Increment and Decrement Timing

The V_{REF} increment/decrement step times are defined by $V_{REF,time}$. $V_{REF,time}$ is defined from t0 to t1, where t1 is referenced to the VREF voltage at the final DC level within the V_{REF} valid tolerance (V_{REF,val_tol}). The V_{REF} valid level is defined by $V_{REF,val}$ tolerance to qualify the step time t1. This parameter is used to insure an adequate RC time constant behavior of the voltage level change after any V_{REF} increment/decrement adjustment.

Note:

- 1. t0 is referenced to the MRS command clock
- 2. t1 is referenced to V_{REF,tol}

V_{REFDO} calibration mode is entered via an MRS command, setting to 1 (0 disables V_{REFDO} calibration mode) and setting MR6[6] to either 0 or 1 to select the desired ran Ř6[5:0] are "Don't Care"). After V_{REFDO} been satisfied. Legal commands for V_{REFDQ} calibration mode at ACT, WR, WRA, RD, RDA, FILL, DEO, and the satisfied stopping to evit V_{REFDQ} calibration mode. Also, after V_{REFDQ} calibration mode has been entered, the first time V_{REFDQ} calibration is calibration mode has been entered, V_{REFDO} calibration mode legal mmands may be issued once t_{VREFDOE} has "dummy" WRITE commands are allowed prior to adjusting the V_{REFDQ} value the first time V_{REFDQ} calibration is performed after initialization.

Setting V_{REFDO} values requires MR6[7] be set to MR6[6] be unchanged from the initial range selection; MR6[5:0] may be set to the desired V_{REFDQ} values. If MR6[7] is set to 0, MR6[6:0] are not written. $V_{REE,time-short}$ or $V_{REE,time-long}$ must be satisfied after each MR6 sommand to set V_{REFDQ} value before the internal V_{REFDQ} value is valid.

If PDA mode is used in conjunction **W** T_{REFDO} calibration, the PDA mode requirement that only MRS commands are allowed while PDA mode is enabled is not waived. That is, the only V_{REFDO} calibration mode legal commands noted above that may be use the MRS commands: MRS to set $V_{
m REFDO}$ values and MRS to exit $V_{
m REFDO}$ calibration mode.

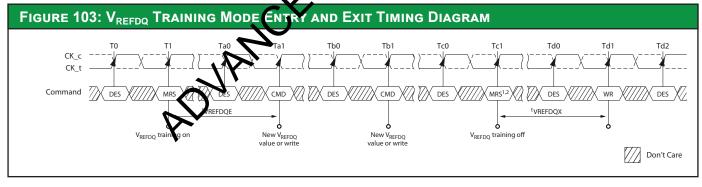
The last MR6[6:0] setting witten to MR6 prior to exiting V_{REFDO} calibration mode is the range and value used for the internal V_{REFDO} setting. V_{REFDO} calibration mode may be exited when the DRAM is in idle state. After the MRS command to exit V_{REFDO} calibration mode has been issued, DES must be issued until ^tV_{REFDOX} has been satisfied where any legal command may then be issued. V_{REFDO} setting should be updated if the die temperature changes too much from the calibration temperature.

The following are typical script when applying the above rules for V_{REFDO} calibration routine when performing V_{REFDO} calibration in Range 1:

- MR6[7:6]10 [5:0]XXXXXXX.
 - Subsequent legal commands while in V_{REFDO} calibration mode: ACT, WR, WRA, RD, RDA, PRE, DES, and MRS (to set V_{REFDO} values and exit V_{REFDO} calibration mode).

- All subsequent V_{REFDQ} calibration MR setting commands are MR6[7:6]10 [5:0]VVVVV.
 - "VVVVVV" are desired settings for V_{REFDO}.
- Issue ACT/WR/RD looking for pass/fail to determine V_{CENT} (midpoint) as needed.
- To exit V_{REFDO} calibration, the last two V_{REFDO} calibration MR commands are:
 - -MR6[7:6]10 [5:0]VVVVV* where VVVVVV* = desired value for V_{REFDO} .
 - MR6[7]0 [6:0]XXXXXXX to exit V_{REFDO} calibration mode.

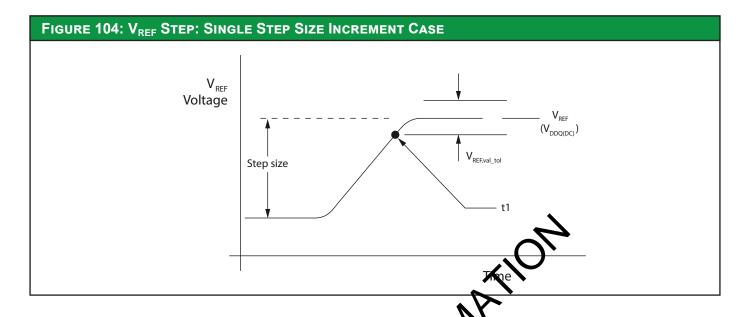
The following are typical script when applying the above rules for V_{REFDQ} calibration routine when performing V_{REFDQ} calibration in Range 2:

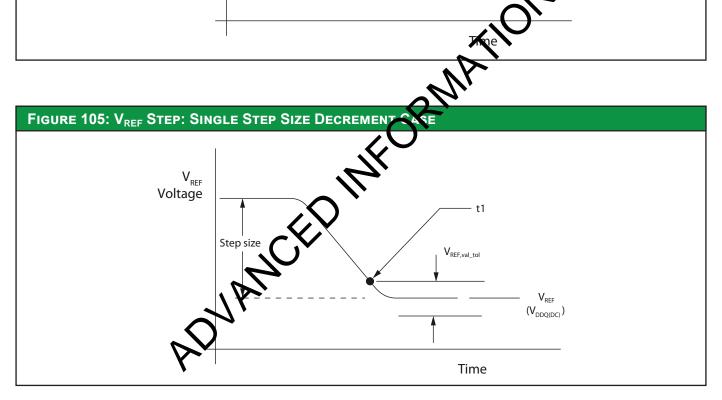

• MR6[7:6]11 [5:0]XXXXXXX.

Subsequent legal commands while in V_{REFDQ} calibration mode: ACT, WR, WRA, RR RDA, PRE, DES, and MRS (to set V_{REFDQ} values and exit V_{REFDQ} calibration mode).

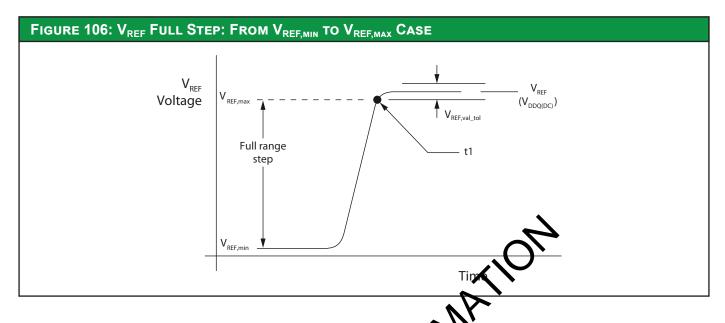
- All subsequent V_{REFDQ} calibration MR setting commands are MR6[7:6]11 [5:0]VVVVVV.
 - "VVVVV" are desired settings for V_{REFDO}.
- Issue ACT/WR/RD looking for pass/fail to determine V_{CENT} (midpoint) as needed.
- To exit V_{REFDO} calibration, the last two VREFDQ calibration MR commands are:
 - -MR6[7:6]11 [5:0]VVVVVV* where VVVVVV* = desired value for Y_{REFDO} .
 - MR6[7]0 [6:0]XXXXXXX to exit V_{REFDO} calibration mode.

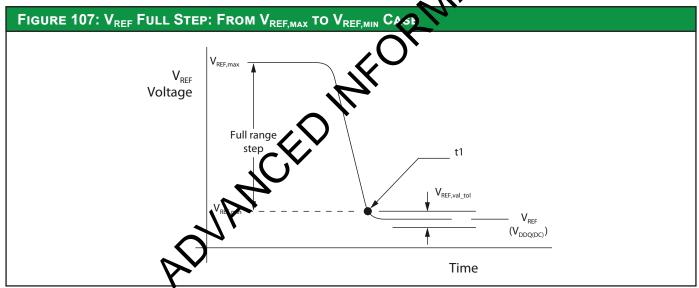
Note:

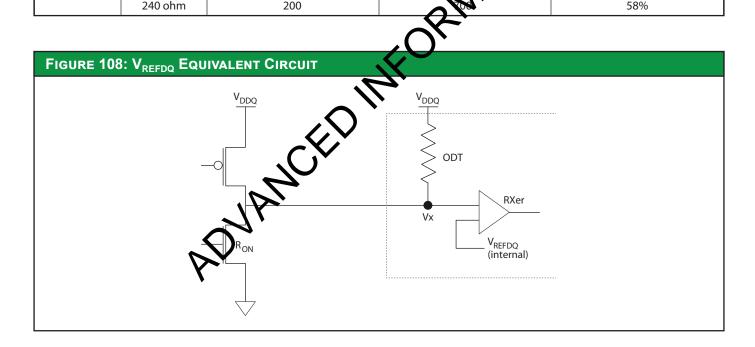

Range may only be set or changed when entering V_{REFDQ} calibration mode; changing range while in or exiting V_{REFDQ} calibration mode is illegal.



Notes:


- 1. New V_{REFDQ} values are not allowed with an MRS command during calibration mode entry.
- 2. Depending on the step size of the latest programmed V_{REF} value, V_{REF} must be satisfied before disabling V_{REFDQ} training mode.





V_{REFDQ} Target Settings

The V_{REFDQ} initial settings are largely dependant on the ODT termination settings. The table below shows all of the possible initial settings available for V_{REFDQ} training; it is unlikely the lower ODT settings would be used in most cases.

TABLE 112	: V _{REFDQ} SETTII	NGS (V _{DDQ} = 1.2V)		
R _{ON}	ODT	Vx – V _{IN} LOW (mV)	V _{REFDQ} (mv)	V _{REFDQ} (%V _{DDQ})
	34 ohm	600	900	75%
	40 ohm	550	875	73%
	48 ohm	500	850	71%
34 ohm	60 ohm	435	815	68%
	80 ohm	360	780	65%
	120 ohm	265	732	61%
	240 ohm	150	675	56%
	34 ohm	700	950	79%
	40 ohm	655	925	77%
	48 ohm	600	900	75%
48 ohm	60 ohm	535	865	72%
	80 ohm	450	825	69%
	120 ohm	345	7/1	64%
	240 ohm	200	O God,	58%

ST9D4512M40DBG0

Connectivity Test Mode

Connectivity test (CT) mode is similar to boundary scan testing but is designed to significantly speed up the testing of electrical continuity of pin interconnections between the device and the memory controller on the PC boards. Designed to work seamlessly with any boundary scan device,

Contrary to other conventional shift-register-based test modes, where test patterns are shifted in and out of the memory devices serially during each clock, the CT mode allows test patterns to be entered on the test input pins in parallel and the test results to be extracted from the test output pins of the device in parallel. These two functions are also performed at the same time, significantly increasing the speed of the connectivity check. When placed in CT mode, the device appears as an asynchronous device to the external controlling agent. After the input test pattern is applied, the connectivity test results are available for extraction in parallel at the test output pins after a fixed propagation delay time.

Note: A reset of the device is required after exiting CT mode (see RESET and Initialization Procedure).

Only digital pins can be tested using the CT mode. For the purposes of a connectivity check, all the pins used for digital logic in the device are classified as one of the following types:

- Test enable (TEN): When asserted HIGH, this pin causes the device to enter CT mode. In CT mode, the normal memory function inside the device is bypassed and the I/O pins appear as a set of test input and output pins to the external controlling agent. Additionally, the Levice will set the internal V_{REFDQ} to $V_{DDQ} \times 0.5$ during CT mode (this is the only time the DRAM takes direct control over setting the internal V_{REFDQ}). The TEN pin is dedicated to the connectivity check function and will not be used during normal device operation.
- Chip select (CS_n): When asserted LOW, this pin enables the test output pins in the device. When de-asserted, these output pins will be High-Z. The CS_n pin in the device serves as the CS_n pin in CT mode.
- Test input: A group of pins used desing normal device operation designated as test input pins. These pins are used to enter the test pattern in CT mode.
- Test output: A group of pins used during normal device operation designated as test output pins. These pins are
 used for extraction of the connectivity test results in CT mode.
- RESET n: This pin must fixed high level during CT mode, as in normal function.

TABLE 1	13	CONNECTIVITY MODE PIN DESCRIPTION AND SWITCHI	NG LEVELS	
CT Mode Pins		Pin Name During Normal Memory Operation	Switching Level	Notes
Test enable		TEN	CMOS (20%/80% V _{DD})	1, 2
Chip select		CS_n	V _{REFCA} ±200mV	3
	Α	BA[1:0], BG[1:0], A[9:0], A10/AP, A11, A12/BC_n, A13, WE_n/A14, CAS_n/A15, RAS_n/A16, CKE, ACT_n, ODT, CLK_t, CLK_c, PAR	V _{REFCA} ±200mV	3
Test input	В	LDM_n/LDBI_n, UDM_n/LDBI_n; DM_n/DBI_n	V _{REFDQ} ±200mV	4
Imput	С	ALERT_n	CMOS (20%/80% V _{DD})	2, 5
	D	RESET_n	CMOS (20%/80% V _{DD})	
Test output		DQ[15:0], UDQS_t, UDQS_c, LDQS_t, LDQS_c; DQS_t, DQS_c	V _{TT} ±100 oV	6

- Notes: 1. TEN: Connectivity test mode is active when TEN is H nd inactive when TEN is LOW. TEN must be LOW during normal operation.
 - 2. CMOS is a rail-to-rail signal with DC HIGH at and DC LOW at 20% of V_{DD} (960mV for DC HIGH and 240mV for DC LOW.)
 - 3. V_{REFCA} should be $V_{DD}/2$.
 - 4. V_{REFDO} should be V_{DDO}/2.
 - 5. ALERT_n switching level is not
 - 6. V_{TT} should be set to $V_{DD}/2$

Minimum Terms Definition for Login Equation

The test input and or ins are related by the following equations, where INV denotes

ration and XOR a logical exclusive OR operation: a logical inversion of

 $(CK_c, ODT, CAS_n/A15)$

R (CKE, RAS_n/A16, A10/AP)

OR (ACT_n, A4, BA1)

 $^{\prime}$ TT7 = x16: XOR (DMU_n/DBIU_n, DML_n/DBIL_n, CK_t)

= x8: XOR (BG1, DML_n/DBIL_n, CK_t)

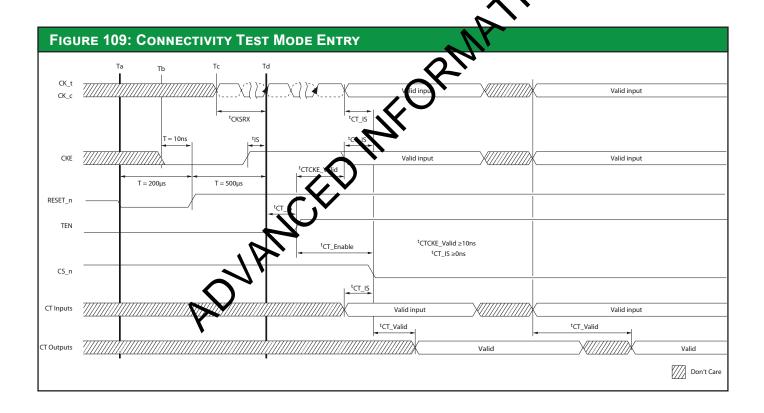
 $= x4: XOR (BG1, CK_t)$

 $MT8 = XOR (WE_n/A14, A12 / BC, BA0)$

VOD (BCO A2 DESET n

Logic Equations

DQ0 = MT0	DQ10 = INV DQ2
DQ1 = MT1	DQ11 = INV DQ3
DQ2 = MT2	DQ12 = INV DQ4
DQ3 = MT3	DQ13 = INV DQ5
DQ4 = MT4	DQ14 = INV DQ6
DQ5 = MT5	DQ15 = INV DQ7
DQ6 = MT6	$LDQS_t = MT8$
DQ7 = MT7	$LDQS_c = MT9$
DQ8 = INV DQ0	$UDQS_t = INV LDQS_t$
DQ9 = INV DQ1	$UDQS_c = INV LDQS_c$



CT Input Timing Requirements

Prior to the assertion of the TEN pin, all voltage supplies must be valid and stable. Upon the assertion of the TEN pin HIGH with RESET_n, CKE and CS_n held HIGH; CLK_t, CLK_c, and CKE signals become test inputs within ^tCTECT_Valid. The remaining CT in-puts become valid ^tCT_Enable after TEN goes HIGH when CS_n allows input to begin sampling, provided inputs were valid for at least tCT_Valid. While in CT mode, refresh activities in the memory arrays are not allowed; they are initiated either externally (auto refresh) or internally (self refresh).

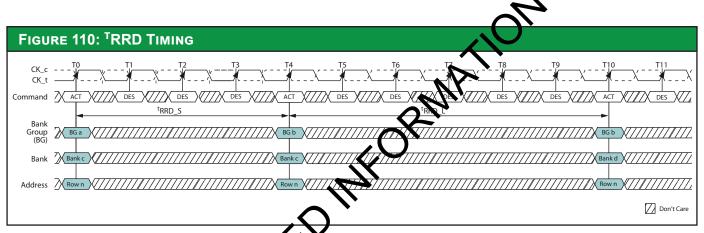
The TEN pin may be asserted after the DRAM has completed power-on. After the DRAM is initialized and V_{REFDQ} is calibrated, CT mode may no longer be used. The TEN pin may be de-asserted at any time in CT mode. Upon exiting CT mode, the states and the integrity of the original content of the memory array are unknown. A full reset of the memory device is required.

After CT mode has been entered, the output signals will be stable within ^tCT_Valid after the test inputs have been applied as long as TEN is maintained HIGH and CS_n is maintained LOW.

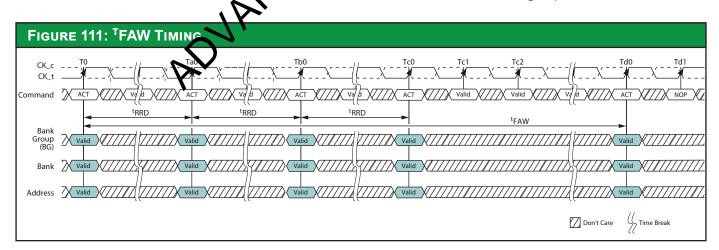
Target Row Refresh Mode

Rows can be accessed a limited number of times within a certain time period before adjacent rows require refresh. The maximum activate count (MAC) is the maximum number of activates that a single row can sustain within a time interval of equal to or less than the maximum activate window (${}^{t}MAW$) before the adjacent rows need to be refreshed, regardless of how the activates are distributed over ${}^{t}MAW$. The row receiving the excessive actives is the target row (TRn). The two adjacent rows to be refreshed are the victim rows. The MAC values are encoded in MPR Page 3 MPR3[4:0].

Target row refresh (TTR) mode is not required to be used, and in some cases has been rendered inoperable. DDR4 devices automatically perform TRR mode in the background. Most die will provide an MPR Page 3 MPR3[3:0] of 1000, indicating there is no restriction to the number of ACTIVATE commands to a given row in a refresh period provided DRAM timing specifications are not violated.


7	ABI	_E 1	14:	MAC Encod	ING OF MPR PAGE 3 MPR3
0	0	0	0	Untested	The device has not been tested for MAC.
0	0	0	1	^t MAC = 700K	
0	0	1	0	^t MAC = 700K	. >
0	0	1	1	^t MAC = 700K	
0	1	0	0	^t MAC = 700K	2
0	1	0	1	^t MAC = 700K	
0	1	1	0	Reserved	2,0
0	1	1	1	^t MAC = 200K	
1	0	0	0	Unlimited	There is no restriction to the number of AC TIVATE commands to a given row in a refresh period provided DRAM timing specifications are not violated.
1	0	0	1	Reserved 🛦	U ^v
:	:	:	:	Reservet	
1	1	1	1	Reserved	

Note: 1. MAC encoding in MPR Page 3 MPR3.



ACTIVATE Command

The ACTIVATE command is used to open (activate) a row in a particular bank for subsequent access. The value on the BG[0] input select the bank group, the BA[1:0] inputs select the bank within the bank group, and the address provided on inputs A[16:0] selects 4the row within the bank. This row remains active (open) for accesses until a PRECHARGE command is issued to that bank. A PRECHARGE command must be issued before opening a different row in the same bank. Bank-to-bank command timing for ACTIVATE commands uses two different timing parameters, depending on whether the banks are in the same or different bank group. tRRD_S (short) is used for timing between banks located in different bank groups. tRRD_L (long) is used for timing between banks located in the same bank group. Another timing restriction for consecutive ACTIVATE commands [issued at tRRD (MIN)] is tFAW (fifth activate window). Because there is a maximum of four banks in a bank group, the tFAW parameter applies across different bank groups (five ACTIVATE commands issued at tRRD_L (MIN) to the same bank group would be limited by tRC).

- Notes: 1. tRRD_S; ACTIVATZ-to-ACTIVATE command period (short); applies to consecutive ACTI-VATE commands to different bank groups (that is, T0 and T4).
 - 2. 2. ^tRRD_L, ACTIVATE to-ACTIVATE command period (long); applies to consecutive ACTIVATE commands to the different banks in the same bank group (that is, T4 and T10).

Note: 1. ^tFAW; four activate windows.

PRECHARGE Command

The PRECHARGE command is used to deactivate the open row in a particular bank or the open row in all banks. The bank(s) will be available for a subsequent row activation for a specified time (tRP) after the PRECHARGE command is issued. An exception to this is the case of concurrent auto precharge, where a READ or WRITE command to a different bank is allowed as long as it does not interrupt the data transfer in the current bank and does not violate any other timing parameters.

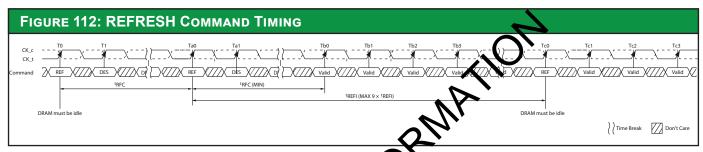
After a bank is precharged, it is in the idle state and must be activated prior to any READ or WRITE commands being issued to that bank. A PRECHARGE command is allowed if there is no open row in that bank (idle state) or if the previously open row is already in the process of precharging. However, the precharge period will be determined by the last PRECHARGE command issued to the bank.

The auto precharge feature is engaged when a READ or WRITE command is issued with A10 HIGH. The auto precharge feature uses the RAS lockout circuit to internally delay the PRECHARGE operation until the ARRAY RESTORE operation has completed. The RAS lockout circuit feature allows the PRECHARGE operation to be partially or completely hidden during burst READ cycles when the auto precharge feature is a gas ed. The PRECHARGE operation will not begin until after the last data of the burst write sequence is properly stored in the memory array.

REFRESH Command

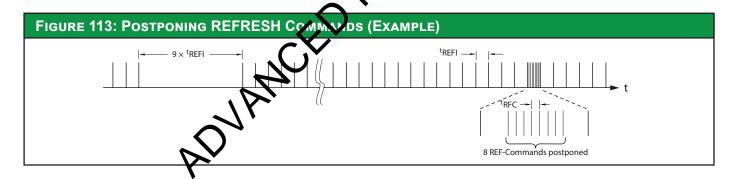
REFRESH Command

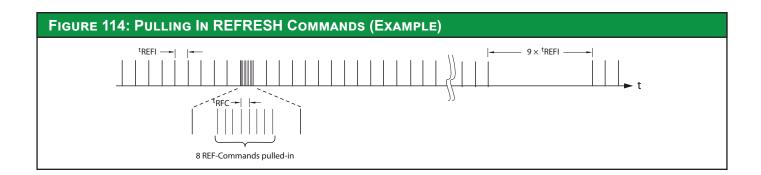
The REFRESH command (REF) is used during normal operation of the device. This command is nonpersistent, so it must be issued each time a refresh is required. The device requires REFRESH cycles at an average periodic interval of ^tREFI. When CS_n, RAS_n/A16, and CAS_n/A15 are held LOW and WE_n/A14 HIGH at the rising edge of the clock, the device enters a REFRESH cycle. All basks of the SDRAM must be precharged and idle for a minimum of the precharge time, ^tRP (MIN), before the REFRESH command can be applied. The refresh addressing is generated by the internal DRAM refresh controller. This makes the address bits "Don't Care" during a REFRESH command. An internal address counter supplies the addresses during the REFRESH cycle. No con-trol of the external address bus is required once this cycle has started. When the REFRESH cycle has completed, all banks of the SDRAM will be in the precharged (idle) state. A delay between the REFRESH cycle time ^tRFC (MIN).


Note: The ^tRFC timing parameter depends on memory density.

In general, a REFRESH coronax d needs to be issued to the device regularly every ^tREFI interval. To allow for improved efficiency in scheduling and switching between tasks, some flexibility in the absolute refresh interval is provided for postponing and pullingin the REFRESH command. A limited number REFRESH commands can be postponed depending on refresh mode: a maximum of 8 REFRESH commands can be postponed when the device is in 1X refresh mode; a maximum of 16 REFRESH commands can be postponed when the device is in 2X refresh mode; and a maximum of 32 REFRESH commands can be postponed when the device is in 4X refresh mode.

When 8 consecutive REFRESH commands are postponed, the resulting maximum interval between the surrounding REFRESH commands is limited to $9 \times {}^{t}$ REFI. For both the 2X and 4X refresh modes, the maximum consecutive RE-FRESH commands allowed is limited to $17 \times {}^{t}$ REFI2 and $36 \times {}^{t}$ REFI4, respectively.




A limited number REFRESH commands can be pulled-in as well. A maximum of 8 additional REFRESH commands can be issued in advance or "pulled-in" in 1X refresh mode, a maximum of 16 additional REFRESH commands can be issued when in advance in 2X refresh mode, and a maximum of 32 additional REFRESH commands can be issued in advance when in 4X refresh mode. Each of these REFRESH commands reduces the number of regular REFRESH commands required later by one. Note that pulling in more than the maximum allowed REFRESH commands in advance does not further reduce the number of regular REFRESH commands required later, so that the resulting maximum interval between two surrounding REFRESH commands is limited to $9 \times {}^{t}$ REFI (Figure 77 (page 134)), $18 \times {}^{t}$ RFEI2, or $36 \times {}^{t}$ REFI4. At any given time, a maximum of 16 REF commands can be issued within $2 \times {}^{t}$ REF, 32 REF2 commands can be issued within $4 \times {}^{t}$ REF, and 64 REF4 commands can be issued within $8 \times {}^{t}$ REFI4.

Notes: 1. Only DES commands are allowed after a REFRESH command is registered until ^tRFC (MIN) expires.

2. Time interval between two RESH commands may be extended to a maximum of 9 × ^tREFI.

Temperature-Controlled Refresh Mode

During normal operation, temperature-controlled refresh (TCR) mode disabled, the device must have a REFRESH command issued once every ^tREFI, except for what is allowed by posting (see REFRESH Command section). This means a REFRESH command must be issued once every 2us if TC is greater than 95°C, 3.9µs if TC is greater than or equal to 85°C, and once every 7.8µs if TC is less than 85°C.

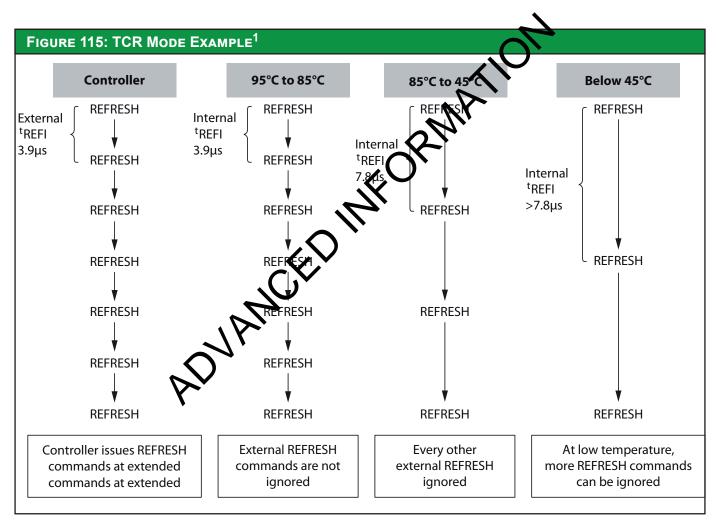
Table 115: Normal ^T REFI Refresh (TCR Disabled)									
	Normal Temperature Extended Temperature								
Temperature	External Refresh Period	Internal Refresh Period	External Refresh Period	Internal Refresh Period					
T _C < 45°C	7 9.16	7.9.16							
45°C ≤ T _C < 85°C	- 7.8μs	7.8µs							
85°C ≤ T < 95°C	N	/A	3.9μs ¹	3.9μs ¹					
95°C ≤ T _C]		1.9µs	1.9µs					

Note: 1. If T_C is less than 85°C, the external refresh period can be 7.8 μ s instead of 3.9 μ s.

When TCR mode is enabled, the device will register the externally supplied At FRESH command and adjust the internal refresh period to be longer than ^tREFI of the normal temperature range, when allowed, by skipping RE-FRESH commands with the proper gear ratio. TCR mode has two ranges to select between the normal temperature range and the extended temperature range; the correct range must be selected so the internal control operates correctly. The DRAM must have the correct refresh rate applied externally; the internal refresh rate is determined by the DRAM based upon the temperature.

TCR Mode - Normal Temperature Range

REFRESH commands should be issued to the device with the refresh period equal to or shorter than ^tREFI of normal temperature range (0°C to 85°C). In this mode, the system guarantees that the temperature does not exceed 85°C. The device may adjust the internal refresh period to be longer than ^tREFI of the normal temperature range by skipping external REFRESH commands with the proper gear ratio when TC is below 45°C. The internal refresh period is automatically adjusted inside the DRAM, and the DRAM controller does not need to provide any additional control.


TCR Mode - Extended Temperature Range

REFRESH commands should be issued to the device with the refresh period equal to or shorter than ^tREFI of extended temperature range (greater than 85°C). Even though the external refresh supports the extended temperature range, the device will adjust its internal refresh period to ^tREFI of the normal temperature range by skipping external REFRESH commands with proper gear ratio when operating in the normal temperature range (0°C to 85°C). The device may adjust the internal refresh period to be longer than ^tREFI of the normal temperature range by skipping external REFRESH commands with the proper gear ratio when TC is below 45°C. The internal refresh period is automatically adjusted inside the DRAM, and the DRAM controller does not need to provide any additional control.

Table 116: Normal ^T REFI Refresh (TCR Enabled)									
	Normal Temperature Range Extended Temperature Range								
Temperature	External Refresh Period	Internal Refresh Period	External Refresh Internal Refresh Period Period						
T _C < 45°C	7.8µs	>> 7.8µs		>> 7.8µs					
45°C ≤ T _C < 85°C	7.8µs	7.8µs	3.9µs ¹	7.8µs					
85°C ≤ T _C < 95°C	N,	/A		3.9µs					

Note: 1. If the external refresh period is 7.8µs, the device will refresh internally at half the listed refresh rate and will violate refresh specifications.

Note: 1. TCR enabled with extended temperature range selected.

Fine Granularity Refresh Mode

Mode Register and Command Truth Table

The REFRESH cycle time (tRFC) and the average refresh interval (tREFI) can be programmed by the MRS command. The appropriate setting in the mode register will set a single set of REFRESH cycle times and average refresh interval for the device (fixed mode), or allow the dynamic selection of one of two sets of REFRESH cycle times and average refresh interval for the device (on-the-fly mode [OTF]). OTF mode must be enabled by MRS before any OTF REFRESH command can be issued.

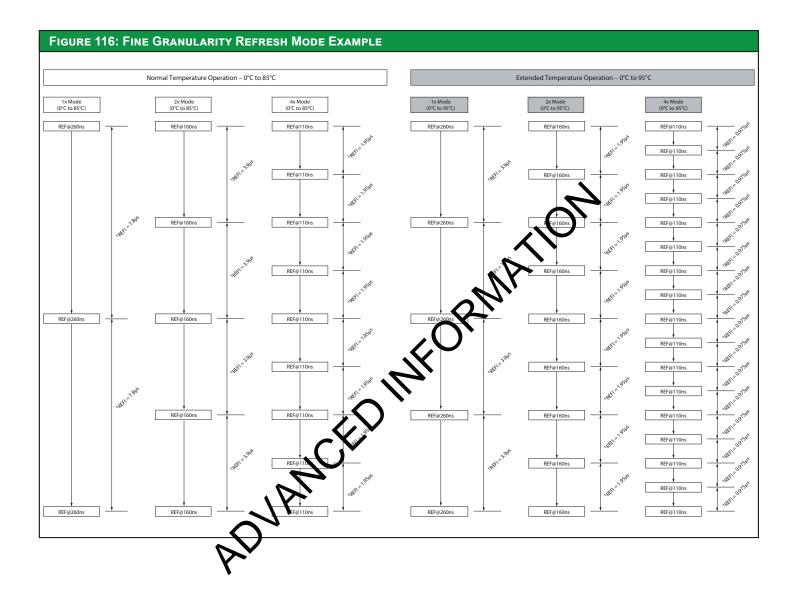
TABLE 11	TABLE 117: MRS DEFINITION								
MR3[8]	MR3[7]	MR3[6]	Refresh Rate Mode						
0	0	0	Normal mode (fixed 1x)						
0	0	1	Fixed 2x						
0	1	0	Fixed 4x						
0	1	1	Reserved						
1	0	0	Reserved						
1	0	1	On-the-fly 1x/2x						
1	1	0	On-the-fly 1x/4x						
1	1	1	Reserved						

There are two types of OTF modes (1x/2x and 1x/4x modes t) at are selectable by programming the appropriate values into the mode register. When either of the two OTF nodes is selected, the device evaluates the BG0 bit when a REFRESH command is issued, and depending on the status of BG0, it dynamically switches its internal refresh configuration between 1x and 2x (or 1x and 4x) modes, and then executes the corresponding REFRESH operation.

TABLE 118: REFRESH COMMANE TO THE TABLE										
Refresh	CS_n	ACT	RNS_n/A 15	CAS_n/A 14	WE_n/ A13	BG1	BG0	A10/ AP	A[9:0], A[12:11], A[20:16]	MR3[8:6
Fixed rate	L	14	L	L	Н	V	V	V	V	0vv
OTF: 1x	L		L	L	Н	V	L	V	V	1vv
OTF: 2x	L	Н	L	L	Н	V	Н	V	V	101
OTF: 4x	L	Н	L	L	Н	V	Н	V	V	110

^tREFI and ^tRFC Parameters

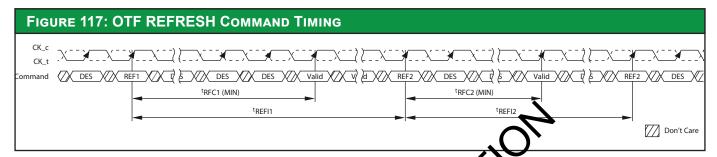
The default refresh rate mode is fixed 1x mode where REFRESH commands should be issued with the normal rate; that is, ${}^{t}REFI1 = {}^{t}REFI(base)$ (for TC \leq 85°C), and the duration of each REFRESH command is the normal REFRESH cycle time (${}^{t}RFC1$). In 2x mode (either fixed 2x or OTF 2x mode), REFRESH commands should be issued to the device at the double frequency (${}^{t}REFI2 = tREFI(base)/2$) of the normal refresh rate. In 4x mode, the REFRESH command rate should be quadrupled (${}^{t}REFI4 = {}^{t}REFI(base)/4$). Per each mode and command type, the ${}^{t}RFC$ parameter has different values as defined in the following table.



For discussion purposes, the REFRESH command that should be issued at the normal refresh rate and has the normal REFRESH cycle duration may be referred to as an REF1x command. The REFRESH command that should be issued at the double frequency (t REFI2 = t REFI(base)/2) may be referred to as a REF2x command. Finally, the REFRESH command that should be issued at the quadruple rate (t REFI4 = t REFI(base)/4) may be referred to as a REF4x command.

In the fixed 1x refresh rate mode, only REF1x commands are permitted. In the fixed 2x refresh rate mode, only REF2x commands are permitted. In the fixed 4x refresh rate mode, only REF4x commands are permitted. When the on-the-fly 1x/2x refresh rate mode is enabled, both REF1x and REF2x commands are permitted. When the OTF 1x/4x refresh rate mode is enabled, both REF1x and REF4x commands are permitted.

TADLE 440). TDEEL AN	d ^t RFC Parameter	nc		~\O`		
Refresh Mode	Parameter	D'REC PARAMETER	2Gb	4Gb	8Gb	16Gb	Units
	^t REFI (base)		7.8	W.	7.8	TBD	μs
1x mode	^t REFI1	0°C ≤ T _C ≤ 85°C	^t REFI(base)	the (base)	tREFI(base)	t REFI(base)	μs
		85°C ≤ T _C ≤ 95°C	tREFI(base)/2	^t REFI(base)/2	^t REFI(base)/2	^t REFI(base)/2	μs
	tRFC1		160	260	350	TBD	ns
2x mode	tREFI20°C	0°C ≤ T _C ≤ 85°C	tREFI(D-Sc)-2	tREFI(base)/2	^t REFI(base)/2	^t REFI(base)/2	μs
		85°C ≤ T _C ≤ 95°C	^t REFI(base)/4	^t REFI(base)/4	^t REFI(base)/4	^t REFI(base)/4	μs
	tRFC2		110	160	260	TBD	ns
4x mode	tREFI40°C	0°C ≤ T _C ≤ 85°C	[†] REFI(base)/4	^t REFI(base)/4	^t REFI(base)/4	^t REFI(base)/4	μs
		$85^{\circ}\text{C} \leq \text{T}_{\text{C}} \leq 95^{\circ}\text{C}$	^t REFI(base)/8	^t REFI(base)/8	^t REFI(base)/8	^t REFI(base)/8	μs
	^t RFC4	1	90	110	160	TBD	ns



Changing Refresh Rate

If the refresh rate is changed by either MRS or OTF. New ^tREFI and ^tRFC parameters will be applied from the moment of the rate change. When the REF1x command is issued to the DRAM, ^tREF1 and ^tRFC1 are applied from the time that the command was issued; when the REF2x command is issued, tREF2 and tRFC2 should be satisfied.

The following conditions must be satisfied before the refresh rate can be chan Otherwise, data retention cannot be guaranteed.

- In the fixed 2x refresh rate mode or the OTF 1x/2x refresh mode, a issued because the last change of the refresh rate mode with an ommand before the refresh rate can be changed by another MRS command.
- In the OTF1x/2x refresh rate mode, an even number of R mmands must be issued between any two REF1x commands.
- In the fixed 4x refresh rate mode or the OTF 1x/4x refresh node, a multiple-of-four number of REF4x commands must be issued because the last change of the refresh rate with an MRS command before the refresh rate can be changed by another MRS command.
- In the OTF1x/4x refresh rate mode, a mult our number of REF4x commands must be issued between any two REF1x commands.

There are no special restrictions for the fi x refresh rate mode. Switching between fixed and OTF modes keeping the same rate is not regarded a h rate change.

Usage with TCR Mode

If the temperature controlled refresh mode is enabled, only the normal mode (fixed 1x mode, MR3[8:6] = 000) is allowed. If any other refresh mode than the normal mode is selected, the temperature controlled refresh mode must be disabled.

Self Refresh Entry and Exit

The device can enter self refresh mode anytime in 1x, 2x, and 4x mode without any restriction on the number of REFRESH commands that have been issued during the mode before the self refresh entry. However, upon self refresh exit, extra REFRESH com-mand(s) may be required, depending on the condition of the self refresh entry.

The conditions and requirements for the extra REFRESH command(s) are defined as follows:

• In the fixed 2x refresh rate mode or the enable-OTF 1x/2x refresh rate mode, it is recommended there be an even number of REF2x commands before entry into self refresh after the last self refresh exit, REF1x command, or MRS command that set the refresh mode. If this condition is met, no additional REFRESH commands are

required upon self refresh exit. In the case that this condition is not met, either one extra REF1x command or two extra REF2x commands must be issued upon self refresh exit. These extra REFRESH commands are not counted toward the computation of the average refresh interval ([†]REFI).

• In the fixed 4x refresh rate mode or the enable-OTF 1x/4x refresh rate mode, it is recommended there be a multiple-of-four number of REF4x commands before entry into self refresh after the last self refresh exit, REF1x command, or MRS command that set the refresh mode. If this condition is met, no additional refresh commands are required upon self refresh exit. When this condition is not met, either one extra REF1x command or four extra REF4x commands must be issued upon self refresh exit. These extra REFRESH commands are not counted toward the computation of the average refresh interval (tREFI).

There are no special restrictions on the fixed 1x refresh rate mode.

This section does not change the requirement regarding postponed REFRESH commands. The requirement for the additional REFRESH command(s) described above is independent of the requirement for the postponed REFRESH commands.

SELF REFRESH Operation

The SELF REFRESH command can be used to retain data in the device, even if the rest of the system is powered down. When in self refresh mode, the device retains data without external clocking. The device has a built-in timer to accommodate SELF REFRESH operation. The SELF REFRESH command is defined by having CS_n, RAS_n, CAS_n, and CKE held LOW with WE_n and ACT_n HIGH at the rising edge of the clock.

Before issuing the SELF REFRESH ENTRY command, the device must be idle with all banks in the precharge state and tRP satisfied. Idle state is defined as: All banks are closed ([†]RP, [†]DAL, and so on, satisfied), no data bursts are in progress, CKE is HIGH, and all timings from previous operations are satisfied ([†]MRD, [†]MOD, [†]RFC, [†]ZQinit, [†]ZQoper, [†]ZQCS, and so on). After the SELF REFRESH ENTRY command is registered, CKE must be held LOW to keep the device in self refresh mode. The DRAM automatically disables ODT termination, regardless of the ODT pin, when it enters self refresh mode and automatically enables ODT upon exiting self refresh. During normal operation (DLL_on), the DLL is automatically disabled upon entering self refresh and is automatically enabled (including a DLL reset) upon exiting self refresh.

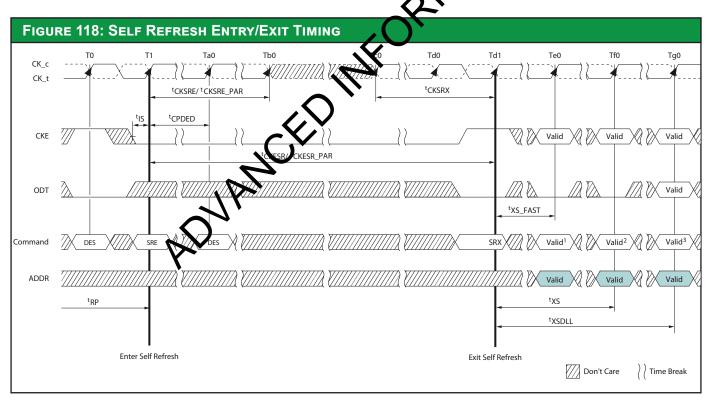
When the device has entered self refresh mode, all of the external control signals, except SKE and RESET_n, are "Don't Care." For proper SELF REFRESH operation, all power supply and reference prix $(V_{DD}, V_{DDQ}, V_{SS}, V_{SSQ}, V_{PP}, V_{DDQ}, V_{SS}, V_{SSQ}, V_{PP}, V_{DDQ}, V_{DDQ$

The clock is internally disabled during a SELF REFRESH operation to save power. The minimum time that the device must remain in self refresh mode is [†]CKESR_XAX. The user may change the external clock frequency or halt the external clock [†]CKSRE_PAR after self remesh entry is registered; however, the clock must be restarted and tCKSRX must be stable before the device can exit SELF REFRESH operation.

The procedure for exiting self refresh requires a sequence of events. First, the clock must be stable prior to CKE going back HIGH. Once a SELF REFRESH EXIT command (SRX, combination of CKE going HIGH and DESELECT on the command bus) is registered, the following liming delay must be satisfied:

Commands that do not require locked The

- tXS = ACT, PRE, PREA, REF, SRE, and PDE
- tXS_FAST = ZQCL, ZQCS, and tASS commands. For an MRS command, only DRAM CL, WR/RTP register, and DLL reset in MR0; R_{TT(NOM}, register in MR1; the CWL and R_{TT(WR)} registers in MR2; and gear-down mode register in MR3; WRITE and RSAS preamble registers in MR4; R_{TT(PARK)} register in MR5; tCCD_L/tDLLK and V_{REFDQ} calibration value registers in MR6 may be accessed provided the DRAM is not in per-DRAM mode. Access to other DRAM mode registers must satisfy tXS timing. WRITE commands (WR, WRS4, WRS8, WRA, WRAS4, and WRAS8) that require synchronous ODT and dynamic ODT controlled by the WRITE command require a locked DLL.


Commands that require locked DLL in the normal operating range:

 ^tXSDLL – RD, RDS4, RDS8, RDA, RDAS4, and RDAS8 (unlike DDR3, WR, WRS4, WRS8, WRA, WRAS4, and WRAS8 because synchronous ODT is required).

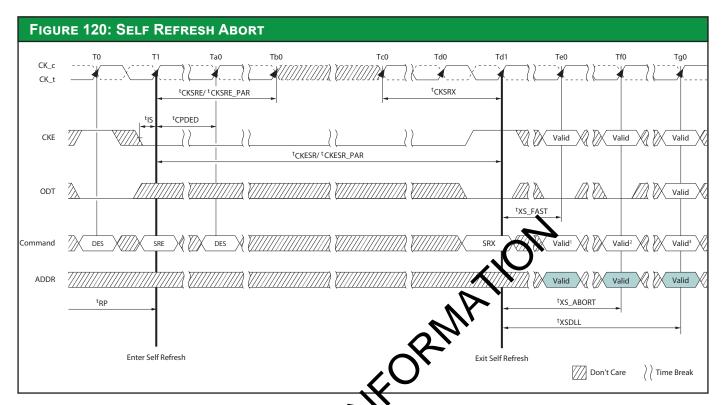
Depending on the system environment and the amount of time spent in self refresh, ZQ CALIBRATION commands may be required to compensate for the voltage and temperature drift described in the ZQ CALIBRATION Commands section. To issue ZQ CALIBRATION commands, applicable timing requirements must be satisfied (see the ZQ Calibration Timing figure).

CKE must remain HIGH for the entire self refresh exit period ^tXSDLL for proper operation except for self refresh re-entry. Upon exit from self refresh, the device can be put back into self refresh mode or power-down mode after waiting at least ^tXS period and issuing one REFRESH command (refresh period of tRFC). The DESELECT command must be registered on each positive clock edge during the self refresh exit interval tXS. ODT must be turned off during ^tXSDLL.

The use of self refresh mode introduces the possibility that an internally timed re event can be missed when CKE is raised for exit from self refresh mode. Upon exit from self refresh, the quires a minimum of one extra REFRESH command before it is put back into self refresh mode.

Notes:

- 1. Only MRS (limited to those described in the SELF REFRESH Operation section), ZQCS, or ZQCL commands are allowed.
- 2. Valid commands not requiring a locked DLL.
- 3. Valid commands requiring a locked DLL.


FIGURE 119: SELF REFRESH ENTRY/EXIT TIMING WITH CAL MODE Service of Kingship Ranking CED INFORMATION

Notes: 1. TAL = 3nCK, $^tCPDED = 4nCK$, $^tCKSRE/^tCKSRE_PAR = 8nCK$, $^tCKSRX = 8nCK$, $^tXS_FAST = REFC4$ (MIN) + 10ns.

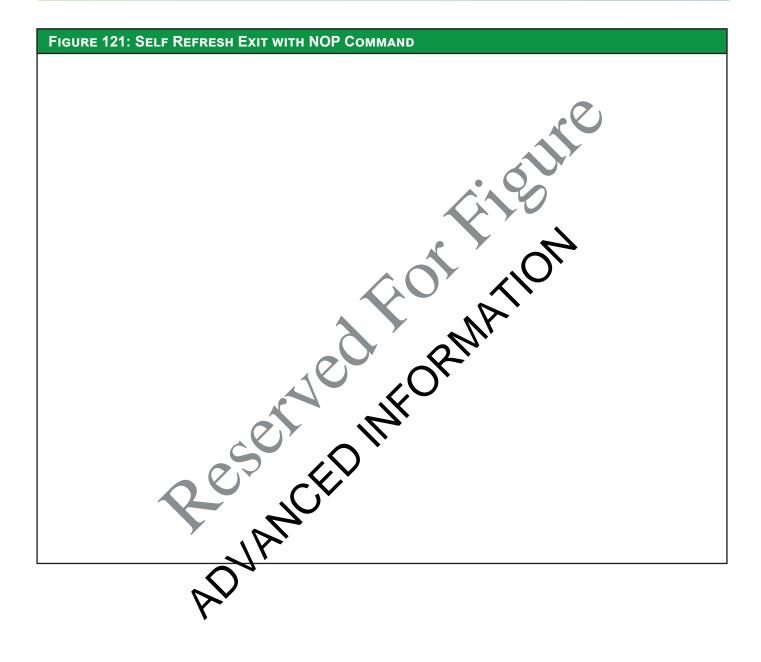
- CS_n = HIGH, ACT_n = "Don't Care," RAS_n/A16 = "Don't Care," CAS_n/A15 = "Don't Care," WE n/A14 = "Don't Care."
- 3. 3. Only MRS (limited to those described in the SELF REFRESH Operations section), ZQCS, or ZQCL commands are allowed.

Self Refresh Abort

The exit timing from self refresh exit to the first valid command not requiring a locked DLL is ^tXS. The value of ^tXS is (^tRFC + 10ns). This delay allows any refreshes started by the device time to complete. ^tRFC continues to grow with higher density devices, so ^tXS will grow as well. An MRS bit enables the self refresh abort mode. If the bit is disabled, the controller uses ^tXS timings (location MR4, bit 9). If the bit is enabled, the device aborts any ongoing refresh and does not increment the refresh counter. The controller can issue a valid command not requiring a locked DLL after a delay of ^tXS_ABORT. Upon exit from self refresh, the device requires a minimum of one extra REFRESH command before it is put back into self refresh mode. This requirement remains the same irrespective of the setting of the MRS bit for self refresh abort.

Notes

- Only MRS (limited to those described in the SELF REFRESH Operation section), ZQCS, or ZQCL commands are allowed.
- 2. Valid commands not requiring a locked DLL with self refresh abort mode enabled in the mode register.
- 3. Valid command requiring a locked DLL.


Self Refresh Exit with NOP Command

Exiting self refresh mode using the NV OPERATION command (NOP) is allowed under a specific system application. This special use of NOP allows for a common command/address bus between active DRAM devices and DRAM(s) in maximum powers aring mode. Self refresh mode may exit with NOP commands provided:

- The device entered self wiresh mode with CA parity and CAL disabled.
- tMPX_S and tMPX_LH are satisfied.
- NOP commands are only issued during ^tMPX_LH window.

No other command is allowed during the ${}^{t}MPX_LH$ window after an SELF REFRESH EXIT (SRX) command is issued.

Power-Down Mode

Power-down is synchronously entered when CKE is registered LOW (along with a DESELECT command). CKE is not allowed to go LOW when the following operations are in progress: MRS command, MPR operations, ZQCAL operations, DLL locking, or READ/ WRITE operations. CKE is allowed to go LOW while any other operations, such as ROW ACTIVATION, PRECHARGE or auto precharge, or REFRESH, are in progress, but the power-down IDD specification will not be applied until those operations are complete. The timing diagrams that follow illustrate power-down entry and exit.

For the fastest power-down exit timing, the DLL should be in a locked state when power-down is entered. If the DLL is not locked during power-down entry, the DLL must be reset after exiting power-down mode for proper READ operation and synchronous ODToperation. DRAM design provides all AC and DC timing and voltage specification as well as proper DLL operation with any CKE intensive operations as long as the controller complies with DRAM specifications.

During power-down, if all banks are closed after any in-progress commands are completed, the device will be in precharge power-down mode; if any bank is open after inprogress commands are completed, the device will be in active power-down mode.

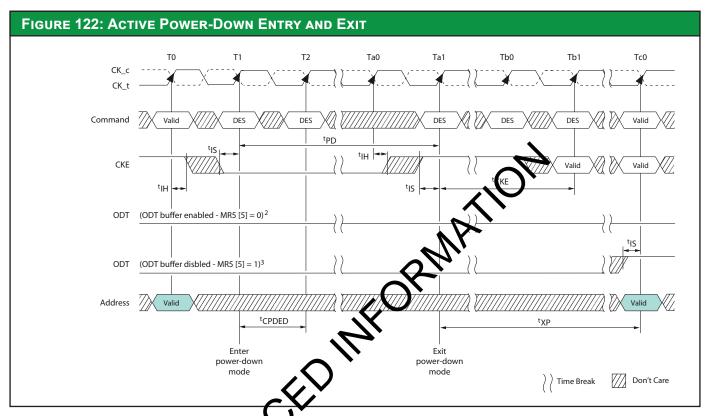
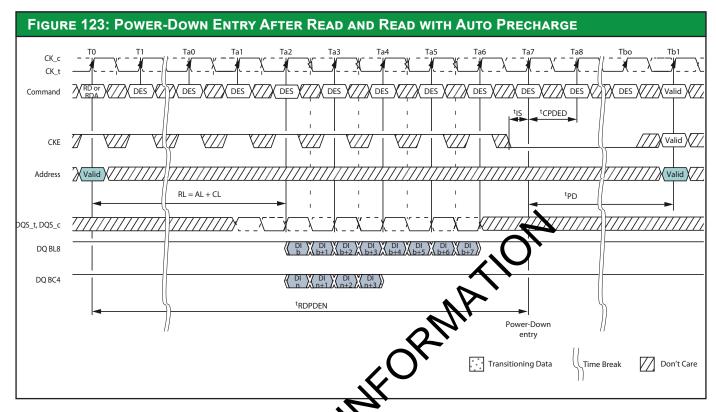
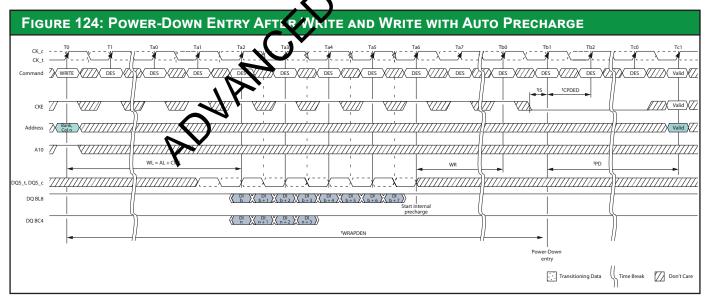

Entering power-down deactivates the input and output buffers, excluding CK, CKE, and RESET_n. In power-down mode, DRAM ODT input buffer deactivation is based on MRx bit Y. If it is configured to 0b, the ODT input buffer remains on and the ODT input signal must be at valid logic level. If it is configured to 1b, the ODT input buffer is deactivated and the DRAM ODT input signal may be floating and the device does not provide $R_{TT(NOM)}$ termination. Note that the device continues to provide $R_{TT(Park)}$ termination had senabled in the mode register MRa bit B. To protect internal delay on the CKE line to block the input sign as, multiple DES commands are needed during the CKE switch off and on cycle(s); this timing period is defined at CPDED. CKE LOW will result in deactivation of command and address receivers after tCPDED has expired.

TABLE 120: POWER-DOWN EXTEX DEFINITIONS									
DRAM Status	*C)	Power- Down Exit	Relevant Parameters						
Active (a bank or more open)	N pn	Fast	^t XP to any valid command.						
Precharged (all banks precharged)	On	Fast	^t XP to any valid command.						

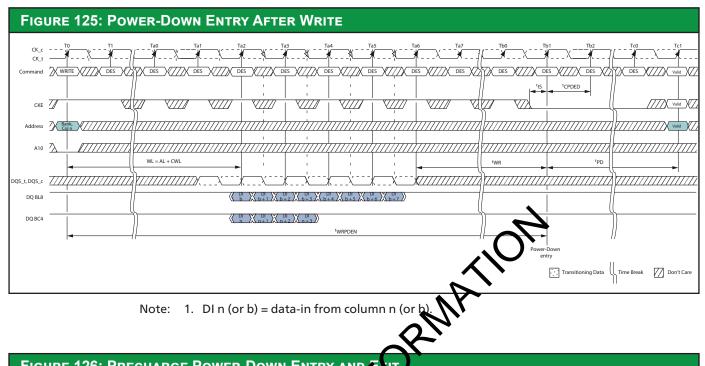
The DLL is kept enabled during precharge power-down or active power-down. In power-down mode, CKE is LOW, RESET_n is HIGH, and a stable clock signal must be maintained at the inputs of the device. ODT should be in a valid state, but all other input signals are "Don't Care." (If RESET_n goes LOW during power-down, the device will be out of power-down mode and in the reset state.) CKE LOW must be maintained until t CKE has been satisfied. Power-down duration is limited by $9 \times {}^{t}$ REFI.

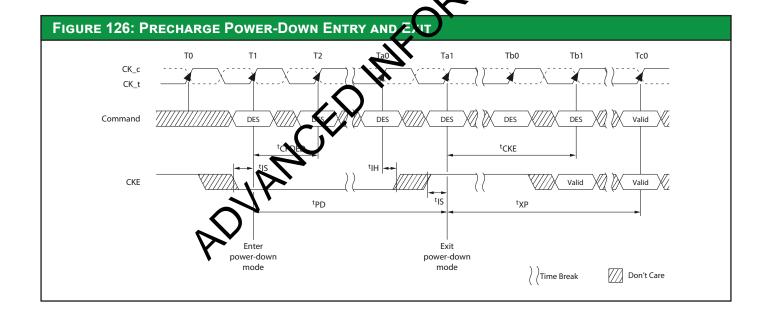
The power-down state is synchronously exited when CKE is registered HIGH (along with DES command). CKE HIGH must be maintained until t CKE has been satisfied. The ODT input signal must be at a valid level when the device exits from power-down mode, independent of MRx bit Y if $R_{TT(NOM)}$ is enabled in the mode register. If $R_{TT(NOM)}$ is dis-abled, the ODT input signal may remain floating. A valid, executable command can be applied with power-down exit latency, t XP, and/or t XPDLL after CKE goes HIGH. Powerdown exit latency is defined in the AC Specifications table.



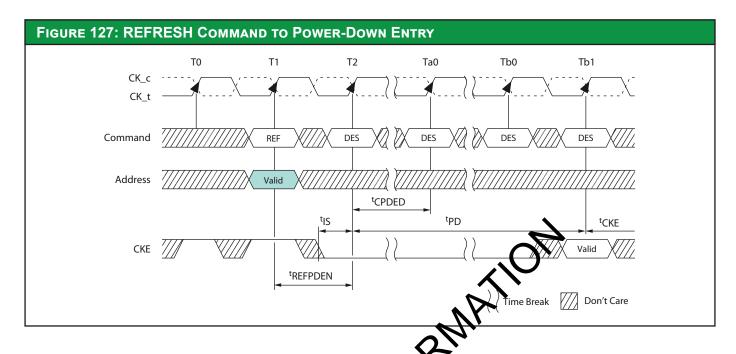

Notes: 1. Valid com at T0 are ACT, DES, or PRE with one bank remaining open after comple-RECHARGE command. tion of h

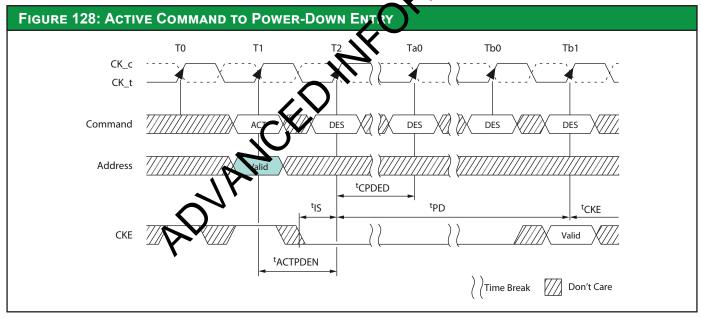
- iven to a valid state; MR5[5] = 0 (normal setting).
- n driven to a valid state; MR5[5] = 1.

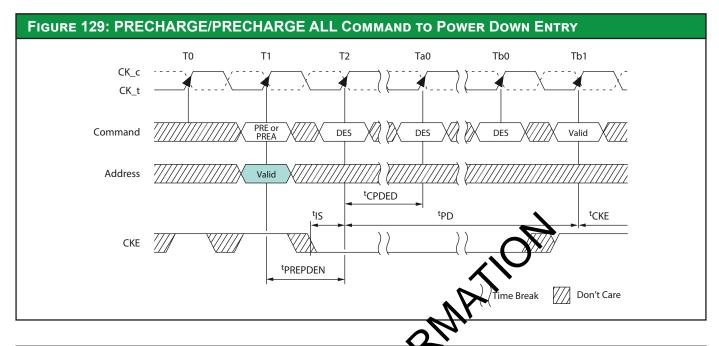

Note: 1. DIn (or b) = data-in from column n (or b).

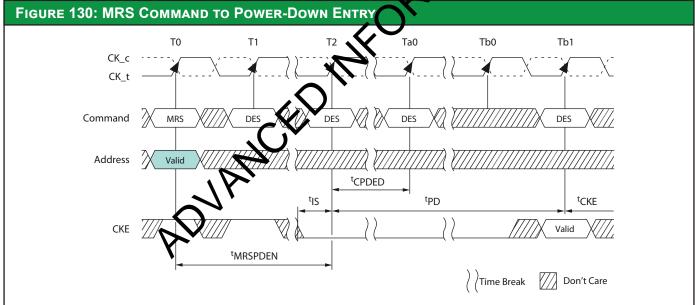


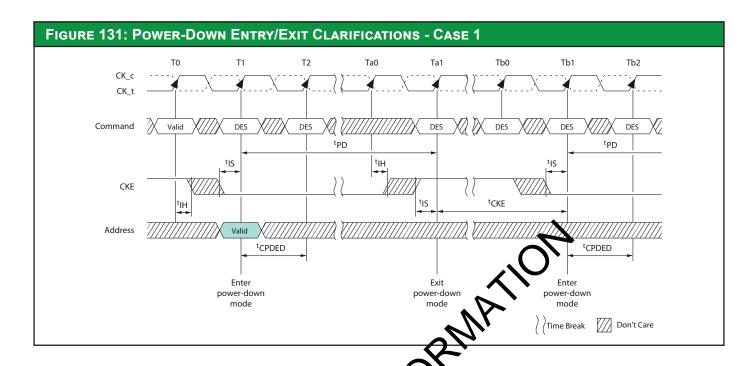
Notes: 1. DI n (or b) = data-in from column n (or b).


2. Valid commands at T0 are ACT, DES, or PRE with one bank remaining open after completion of the PRECHARGE command.

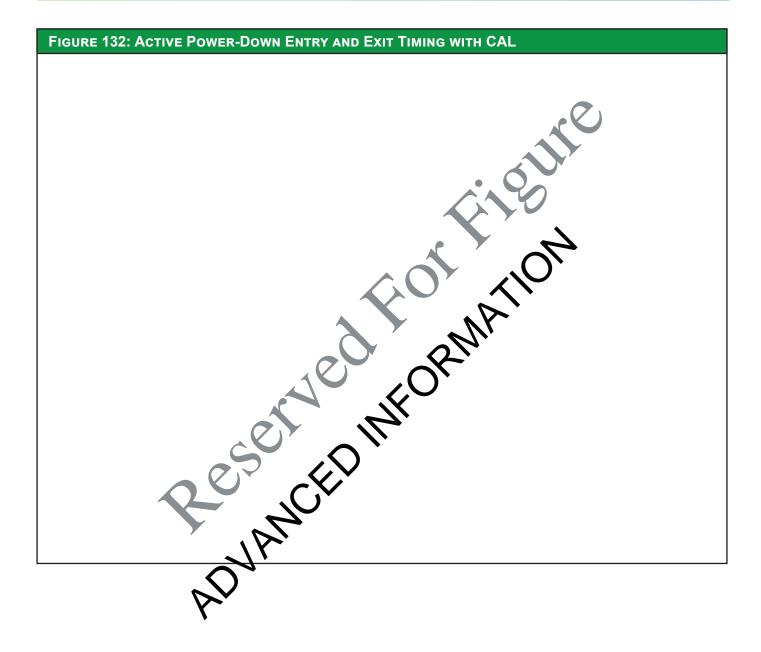


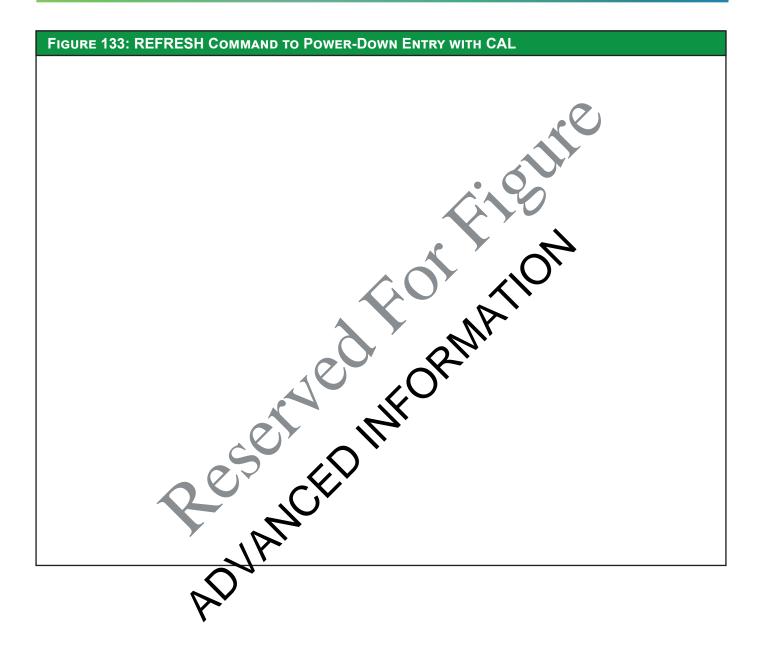




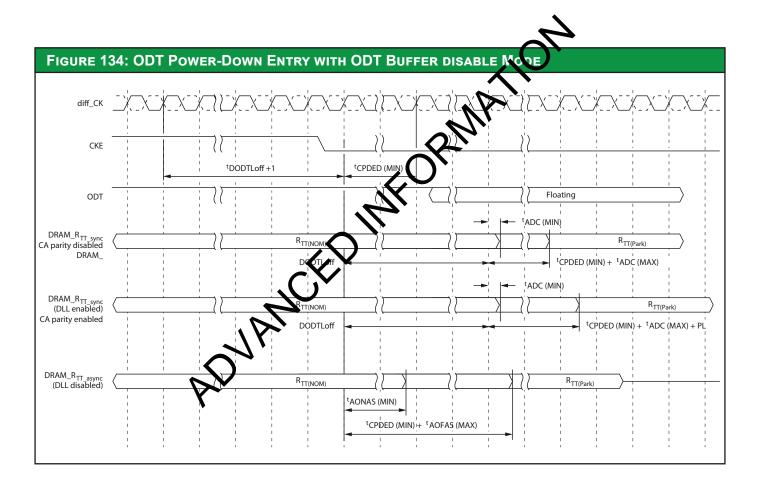


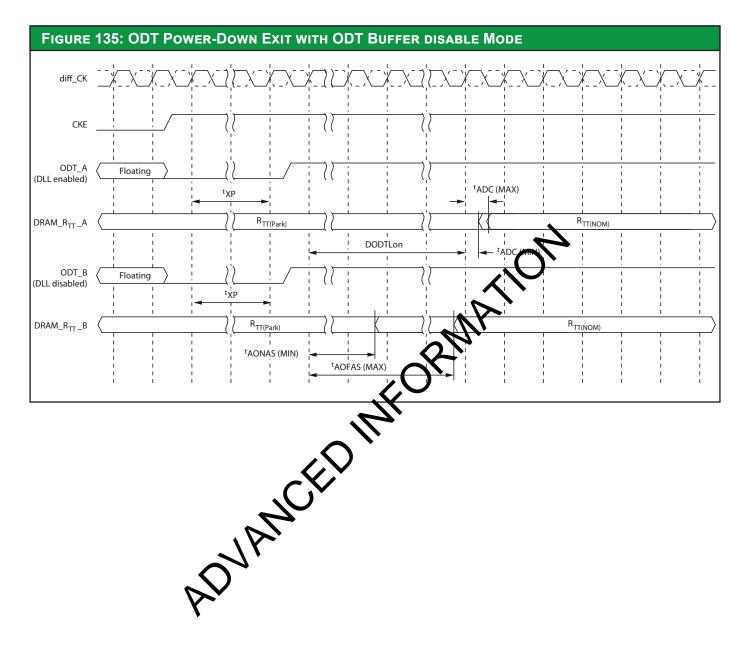
Power-Down Clarifications - Case 1


When CKE is registered LOW for power-down entry, tPD (MIN) must be satisfied before CKE can be registered HIGH for power-down exit. The minimum value of parameter t PD (MIN) is equal to the minimum value of parameter t CKE (MIN) as shown in the Timing Parameters by Speed Bin table. A detailed example of Case 1 follows.


Power-Down Entry, Exit Timing with CAL

Command/Address latency is used and additional times restrictions are required when entering power-down, as noted in the following figures.


ODT Input Buffer Disable Mode for Power-Down


ODT Input Buffer Disable Mode for Power-Down

ODT input buffer disable mode, when enabled via MR5[5], will prevent the device from providing $R_{TT(NOM)}$ termination during power-down for additional power savings.

The internal delay on the CKE path to disable the ODT buffer and block the sampled output must be accounted for; therefore, ODT must be continuously driven to a valid level, either LOW or HIGH, when entering power-down. However, after ^tCPDED (MIN) has been satisfied, the ODT signal may float.

When ODT input buffer disable mode is enabled, $R_{TT(NOM)}$ termination corresponding to sampled ODT after CKE is first registered LOW (and ^tANPD before that) may not be provided. ^tANPD is equal to (WL - 1) and is counted backward from PDE, with CKE registered LOW.

CRC Write Data Feature

CRC Write Data

The CRC write data feature takes the CRC generated data from the DRAM controller and compares it to the internally CRC generated data and determines whether the two match (no CRC error) or do not match (CRC error).

WRITE CRC DATA Operation

A DRAM controller generater a CRC checksum using a 72-bit CRC tree and forms the write data frames, as shown in the following CRC data mapping tables. The device has two identical CRC trees each, one for the lower byte and one for the upper byte, will be input data bits used by each, and the remaining upper 8 bits on each byte dependant upon whether DM_n/DBI_n is used (1s are sent when not used). The memory controller must send 1s in transfer 9 location whether or not DM_n/DBI_n is used.

The DRAM checks for an error in a received code word D[71:0] by comparing the received checksum against the computed checksum and reports errors using the ALERT_n signal if there is a mismatch. The DRAM can write data to the DRAM core without waiting for the CRC check for full writes when DM is disabled. If bad data is written to the DRAM core, the DRAM memory controller will try to overwrite the bad data with good data; this means the DRAM controller is responsible for data coherency when DM is disabled. However, in the case where both CRC and DM are enabled via MRS (that is, persistent mode), the DRAM will not write bad data to the core when a CRC error is detected.

DBI n and CRC Both Enabled

The DRAM computes the CRC for received written data D[71:0]. Data is not inverted back based on DBI before it is used for computing CRC. The data is inverted back based on DBI before it is written to the DRAM core.

DM_n and CRC Both Enabled

When both DM and write CRC are enabled in the DRAM mode register, the DRAM calculates CRC before sending the write data into the array. If there is a CRC error, the DRAM blocks the WRITE operation and discards the data. The *Nonconsecutive WRITE (BL8/BC4-OTF) with 2tCK Preamble and Write CRC in Same or Different Bank Group and the WRITE (BL8/BC4-OTF/Fixed) with 1tCK Preamble and Write CRC in Same or Different BankGroup* figures in the WRITE Operation section show timing differences when DM is enabled.

DM_n and DBI_n Conflict During Writes with CRC Enabled

Both write DBI_n and DM_n can not be enabled at the same time; read DM_n and DM_n can be enabled at the same time.

CRC and Write Preamble Restrictions

When write CRC is enabled:

- And 1^tCK WRITE preamble mode is enabled, a ^tCCD_S r ^tCCD_L of 4 clocks is not allowed.
- And 2^tCK WRITE preamble mode is enabled, a ^tCCD S or ^tCCD L of 6 clocks is not allowed.

CRC Simultaneous Operation Restrictions

When write CRC is enabled, neither Now writes nor per-DRAM mode is allowed.

CRC Polynomial

The CRC polynomial used N NR4 is the ATM-8 HEC, X8 + X2 + X1 + 1.

A combinatorial logic block implementation of this 8-bit CRC for 72 bits of data in-cludes 272 two-input XOR gates contained in eight 6-XOR-gate-deep trees.

The CRC polynomial and combinatorial logic used by DDR4 is the same as used on GDDR5.

The error coverage from the DDR4 polynomial used is shown in the following table.

Table 121: CRC Error Detection Coverage							
Error Type Detection Capability							
Random single-bit errors	100%						
Random double-bit errors 100%							

Table 121: CRC Error Detection Coverage (Continued)								
Error Type	Detection Capability							
Random odd count errors	100%							
Random multibit UI vertical column error detection excluding DBI bits	100%							

CRC Combinatorial Logic Equations module CRC8 D72;

// polynomial: (0 1 2 8) // data width: 72 // convention: the first serial data bit is D[71] //initial condition all 0 implied // " \wedge " = XOR function [7:0] nextCRC8 D72; input [71:0] Data; input [71:0] D; reg [7:0] CRC; begin

D = Data;CRC[0] =

FORMATION D[69]^D[68]^D[67]^D[66]^D[64]^D[63]^D[69]^D[56]^D[54]^D[53]^D[52]^D[50]^D[49] 5]^D[34]^D[31]^D[30]^D[28]^D[23]^D[21]^D[1]^D[48]^D[45]^D[43]^D[40]^D[39]^I 9]^D[18]^D[16]^D[14]^D[12]^D[8 \D[6]^D[0]:

CRC[1] =

1] \(\D[60] \cdot D[57] \cdot D[56] \cdot D[55] \cdot D[52] \cdot D[51] \cdot D[48] \cdot D[46] D[70]^D[66]^D[65]^D[63]^D]^D[45]^D[44]^D[43]^D[4 \[39]^D[36]^D[34]^D[32]^D[30]^D[29]^D[28]^D[24]^D[2 3]^D[22]^D[21]^D[20] ^D[17]^D[16]^D[15]^D[14]^D[13]^D[12]^D[9]^D[6]^D[1]^D[0]:

CRC[2] =

[63]^D[62]^D[61]^D[60]^D[58]^D[57]^D[54]^D[50]^D[48]^D[47 D[71]^D[69]^D[6 |^D[46|^D[44|\dagged]43|^D[42|^D[39|^D[37|^D[34|^D[33|^D[29|^D[28|^D[25|^D[24|^D[2 2]^D[17]^D[15]^D[13]^D[12]^D[10]^D[8]^D[6]^D[2]^D[1]^D[0];

CRC[3] =

D[70]^D[69]^D[64]^D[63]^D[62]^D[61]^D[59]^D[58]^D[55]^D[51]^D[49]^D[48]^D[47] |^D[45]^D[44]^D[43]^D[40]^D[38]^D[35]^D[34]^D[30]^D[29]^D[26]^D[25]^D[23]^D[1 8]^D[16]^D[14]^D[13]^D[11]^D[9]^D[7]^D[3]^D[2]^D[1];

CRC[4] =

D[71]^D[70]^D[65]^D[64]^D[63]^D[62]^D[60]^D[59]^D[56]^D[52]^D[50]^D[49]^D[48 |^D[46]^D[45]^D[44]^D[41]^D[39]^D[36]^D[35]^D[31]^D[30]^D[27]^D[26]^D[24]^D[1 9]^D[17]^D[15]^D[14]^D[12]^D[10]^D[8]^D[4]^D[3]^D[2];

CRC[5] =

D[71]^D[66]^D[65]^D[64]^D[63]^D[61]^D[60]^D[57]^D[53]^D[51]^D[50]^D[49]^D[47] |^D[46]^D[45]^D[42]^D[40]^D[37]^D[36]^D[32]^D[31]^D[28]^D[27]^D[25]^D[20]^D[1 8]^D[16]^D[15]^D[13]^D[11]^D[9]^D[5]^D[4]^D[3];

CRC[6] =

 $D[67]^D[66]^D[65]^D[64]^D[62]^D[61]^D[58]^D[54]^D[52]^D[51]^D[50]^D[48]^D[47]^D[46]^D[43]^D[41]^D[38]^D[37]^D[33]^D[32]^D[29]^D[28]^D[26]^D[21]^D[19]^D[17]^D[16]^D[14]^D[12]^D[10]^D[6]^D[5]^D[4];$

CRC[7] =

 $\label{eq:decomposition} D[68]^D[65]^D[63]^D[62]^D[59]^D[55]^D[53]^D[52]^D[51]^D[49]^D[48]^D[47]^D[44]^D[42]^D[39]^D[38]^D[34]^D[33]^D[30]^D[29]^D[27]^D[22]^D[20]^D[18]^D[17]^D[15]^D[13]^D[11]^D[6]^D[5];$

nextCRC8_D72 = CRC;

Burst Ordering for BL8

DDR4 supports fixed WRITE burst ordering [A2:A1:A0 = 0:0:0] when write CRC is enabled in BL8 (fixed).

CRC Data Bit Mapping

The x16 die are treated as two x8 devices; a x16 device will have two identical CRC trees implemented. CRC[7:0] covers data bits D[71:0], and CRC[15:8] covers data bits D[143:72].

TABLE	Table 122: CRC Data Mapping for BL8									
Func-					Trar	sfer				
tion	0	1	2	3	4	5	6	7	8	9
DQ0	D0	D1	D2	D3	D4	D5	D6	D7	CRC0	1
DQ1	D8	D9	D10	D11	D12	D13	D14	D15	CRC1	1
DQ2	D16	D17	D18	D19	D20	D21	D22	D23	CRC2	1
DQ3	D24	D25	D26	D27	D28	D29	D30	D31	CRC3	1
DQ4	D32	D33	D34	D35	D36	D37	D38	D39	CRC4	1
DQ5	D40	D41	D42	D43	D44	D45	D46	D47	CRC5	1
DQ6	D48	D49	D50	D51	D52	D53	D54	D55	CRC6	1
DQ7	D56	D57	D58	D59	D60	D61	D62	D63	CIC7	1
LDM_n/ LDBI_n	D64	D65	D66	D67	D68	D69	D70	D7	1	1
DQ8	D72	D73	D74	D75	D76	D77	D78	D79	CRC8	1
DQ9	D80	D81	D82	D83	D84	D85	D86	D 87	CRC9	1
DQ10	D88	D89	D90	D91	D92	D93	DV4	D95	CRC10	1
DQ11	D96	D97	D98	D99	D100	D1¢	D102	D103	CRC11	1
DQ12	D104	D105	D106	D107	D108	0101	D110	D111	CRC12	1
DQ13	D112	D113	D114	D115	D116	D+17	D118	D119	CRC13	1
DQ14	D120	D121	D122	D123	D124	D125	D126	D127	CRC14	1
DQ15	D128	D129	D130	D131	2131	D133	D134	D135	CRC15	1
UDM_n/ UD_n	D136	D137	D138	D1/9	D140	D141	D142	D143	1	1

CRC Enabled With BC4

If CRC and BC4 are both enabled, the raddress bit A2 is used to transfer critical data first for BC4 writes.

CRC with BC4 Data Lit Mapping

There are two identical CRC trees for x16 devices, each have CRC tree inputs of 36 bits.

When A2 = 0, input bits D[67:64] are used if DBI_n or DM_n functions are enabled; if DBI_n and DM_n are disabled, then D[67:64] are 1s. The input bits D[139:136] are used if DBI_n or DM_n functions are enabled; if DBI_n and DM_n are disabled, then D[139:136] are 1s.

When A2 = 1, data bits D[7:4] are used as inputs for D[3:0], D[15:12] are used as inputs for D[11:8], and so forth, for the CRC tree. Input bits D[71:68] are used if DBI_n or DM_n functions are enabled; if DBI_n and DM_n are disabled, then D[71:68] are 1s. The input bits D[143:140] are used if DBI_n or DM_n functions are enabled; if DBI_n and DM_n are disabled, then D[143:140] are 1s.

					Tran	nsfer				
Function	0	1	2	3	4	5	6	7	8	9
					A2 = 0					
DQ0	D0	D1	D2	D3	1	1	1	1	CRC0	1
DQ1	D8	D9	D10	D11	1	1	1	1	CRC1	1
DQ2	D16	D17	D18	D19	1	1	1	1	CRC2	1
DQ3	D24	D25	D26	D27	1	1	1	1	CRC3	1
DQ4	D32	D33	D34	D35	1	1	1	1	CRC4	1
DQ5	D40	D41	D42	D43	1	1	1	1	CRC5	1
DQ6	D48	D49	D50	D51	1	1	1_5	\sum_{1}	CRC6	1
DQ7	D56	D57	D58	D59	1	1		1	CRC7	1
LDM_n/LDBI_n	D64	D65	D66	D67	1	1		1	1	1
DQ8	D72	D73	D74	D75	1	1 6	1	1	CRC8	1
DQ9	D80	D81	D82	D83	1	_1 / \	1	1	CRC9	1
DQ10	D88	D89	D90	D91	1		1	1	CRC10	1
DQ11	D96	D97	D98	D99	1		1	1	CRC11	1
DQ12	D104	D105	D106	D107	1	1	1	1	CRC12	1
DQ13	D112	D113	D114	D115	X	1	1	1	CRC13	1
DQ14	D120	D121	D122	D123		1	1	1	CRC14	1
DQ15	D128	D129	D130	D121	1	1	1	1	CRC15	1
JDM_n/UDBI_n	D136	D137	D138	N13	1	1	1	1	1	1
					A2 = 1					
DQ0	D4	D5	N	D7	1	1	1	1	CRC0	1
DQ1	D12	D13	014	D15	1	1	1	1	CRC1	1
DQ2	D0	D21	D22	D23	1	1	1	1	CRC2	1
DQ3	D28	229	D30	D31	1	1	1	1	CRC3	1
DQ4	D36	D3	D38	D39	1	1	1	1	CRC4	1
DQ5	D44	D45	D46	D47	1	1	1	1	CRC5	1
DQ6	D52	D53	D54	D55	1	1	1	1	CRC6	1
DQ7	D60	D61	D62	D63	1	1	1	1	CRC7	1
LDM_n/LDBI_n	D68	D69	D70	D71	1	1	1	1	1	1

TABLE 123: C	Table 123: CRC Data Mapping for BC4 (Continued)									
	Transfer									
Function	0	1	2	3	4	5	6	7	8	9
DQ8	D76	D77	D78	D79	1	1	1	1	CRC8	1
DQ9	D84	D85	D86	D87	1	1	1	1	CRC9	1
DQ10	D92	D93	D94	D95	1	1	1	1	CRC10	1
DQ11	D100	D101	D102	D103	1	1	1	1	CRC11	1
DQ12	D108	D109	D110	D111	1	1	1	1	CRC12	1
DQ13	D116	D117	D118	D119	1	1	1	1	CRC13	1
DQ14	D124	D125	D126	D127	1	1	1	1	CRC14	1
DQ15	D132	D133	D134	D135	1	1	1		CRC15	1
UDM_n/UDBI_n	D140	D141	D142	D143	1	1		1	1	1

CRC Equations for x8 Device in BC4 Mode with A2 = 0 and

The following example is of a CRC tree when x8 is used in C4 mode (x4 and x16 CRC trees have similar differences).

CRC[0], A2=0 =

1^1^D[67]^D[66]^D[64]^1^1^D[56]^1^1 ^D[49]^D[48]^1^D[43]^D[40]^1^D[3 5]^D[34]^1^1^1^1^1^1D[19]^D[18]^D[16]^ \$1^D[8] ^1^1^ D[0];

CRC[0], A2=1 =

1^1^D[71]^D[70]^D[68]^1^1^D ^1^D[54]^D[53]^D[52]^1^D[47]^D[44]^1^D[3 9]^D[38]^1^1^1^1^1^D[23] [20]^1^1^D[12]^1^1^D[4];

CRC[1], A2=0 =

1^D[66]^D[65]^1^1^1 D[56]^1^1^D[51]^D[48]^1^1^1^D[43]^D[41]^1^1^D[34]^D[32]^1^1^1^D[2 1^1^D[18]^D[17]^D[16]^1^1^1^1^D[9] ^1^D[1]^D[0];

CRC[1], A2=1 =

1^D[61]^D[60]^1^1^D[55]^D[52]^1^1^1^D[47]^D[45]^1^1^D[38 1^D[70]^D[69]]^D[36]^1^1 28]^1^1^1^1^1D[22]^D[21]^D[20]^1^1^1^1^1D[13]^1^D[5]^D[4];

CRC[2], A2=0 =

1^1^1^1^1^1^1^1D[58]^D[57]^1^D[50]^D[48]^1^1^1^D[43]^D[42]^1^1^D[34]^D[33]^1 ^1^D[25]^D[24]^1^D[17]^1^1^1^D[10]^D[8] ^1^D[2]^D[1]^D[0];

CRC[2], A2=1 =

1^1^1^1^1^1^1^1D[62]^D[61]^1^D[54]^D[52]^1^1^1^D[47]^D[46]^1^1^D[38]^D[37]^1 ^1^D[29]^D[28]^1^D[21]^1^1^1^D[14]^D12]^1^D[6]^D[5]^D[4];

CRC[3], A2=0 =

1^1^D[64]^1^1^1^D[59]^D[58]^1^D[51]^D[49]^D[48]^1^1^1^D[43]^D[40]^1^D[35]^ D[34]^1^1^D[26]^D[25]^1^D[18]^D[16]^1^1^D[11]^D[9]^1^D[3]^D[2]^D[1];

CRC[3], A2=1 =

1^1^D[68]^1^1^1^D[63]^D[62]^1^D[55]^D[53]^D[52]^1^1^1^1^D[47]^D[44]^1^D[39]^ D[38]^1^1^D[30]^D[29]^1^D[22]^D[20]^1^1^D[15]^D[13]^1^D[7]^D[6]^D[5];

CRC[4], A2=0 =

 $1^1 D[65] D[64] 1^1 D[59] D[56] 1D[50] D[49] D[48] 1^1 D[41] 1^1 D[35] D[27] D[26] D[24] D[19] D[17] 1^1 D[10] D[8] 1^1 D[3] D[2];$

CRC[4], A2=1 =

 $1^{1}D[69]^{D}[68]^{1}^{1}D[63]^{D}[60]^{1}D[54]^{D}[53]^{D}[52]^{1}^{1}^{1}D[45]^{1}^{D}[39]^{1}^{1}D[30]^{D}[28]^{D}[23]^{D}[21]^{1}^{1}^{1}D[14]^{D}[12]^{1}^{D}[6];$

CRC[5], A2=0 =

 $1^{D}[66]^{D}[65]^{D}[64]^{1}^{1}^{1}^{D}[57]^{1}^{D}[51]^{D}[50]^{D}[49]^{1}^{1}^{1}^{D}[42]^{D}[40]^{1}^{D}[50]^{D}[49]^{1}^{D}[40]^{1}^{D}[40]^{$

CRC[5], A2=1 =

 $1^{D}[70]^{D}[69]^{D}[68]^{1}^{1}^{1}^{D}[61]^{1}^{D}[55]^{D}[54]^{D}[53]^{1}^{1}^{1}^{D}[46]^{D}[44]^{1}^{D}[53]^{1}^{D}[53]^{D}[54]^{D}[53$

CRC[6], A2=0 =

D[67]^D[66]^D[65]^D[64]^1^1^D[58]^1^1^D[50]^D[48]^1^1^D[3]^D[41]^1^1 ^D[33]^D[32]^1^1^D[26]^1^D[19]^D[17]^D[16]^1^1^D[10]^1^^^1,

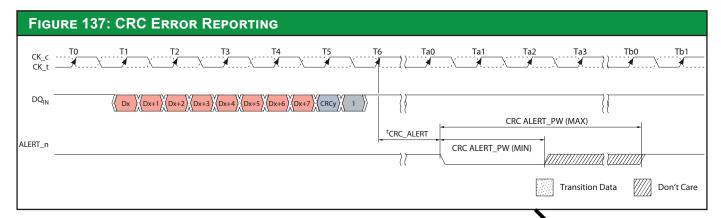
CRC[6], A2=1 =

D[71]^D[70]^D[69]^D[68]^1^1^D[62]^1^1^D[55]^D[54]^D[52]^1^1^D[47]^D[45]^1^1 ^D[37]^D[36]^1^1^D[30]^1^D[23]^D[21]^D[20]^1^1^D[44]^1^1;

CRC[7], A2=0 =

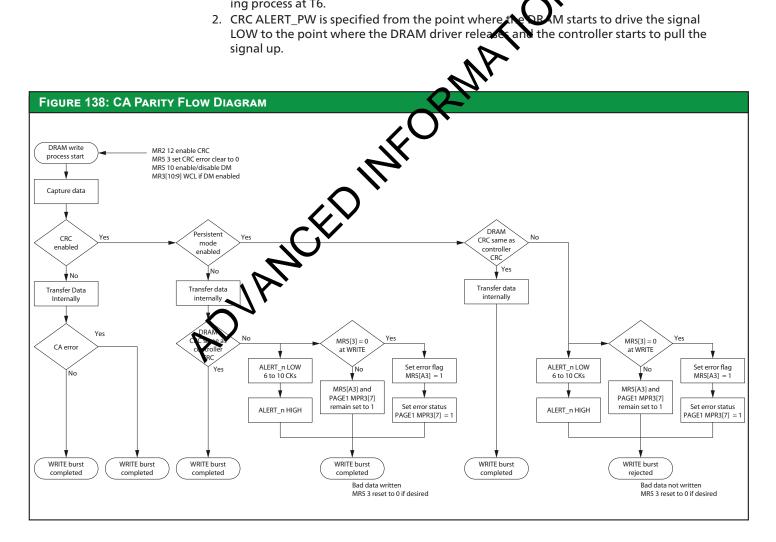
 $1^{D}[67]^{D}[66]^{D}[65]^{1}^{1}^{D}[59]^{1}^{1}^{1}^{D}[51]^{D}[48]^{D}[48]^{1}^{1}^{D}[42]^{1}^{1}^{D}[34]^{D}[33]^{1}^{1}^{D}[27]^{1}^{1}^{D}[18]^{D}[17]^{1}^{D}[16]^{D}[17]^{1}^{1}^{D}[18]^{D}[17]^{$

CRC[7], A2=1 =


1^D[71]^D[70]^D[69]^1^1^D[63]^1^1^1^[55]^D[53]^D[52]^1^1^D[46]^1^1^D[38]^D[37]^1^1^D[31]^1^1^D[22]^D[21]^1^1^D[15]^1^1^1;

CRC Error Handling

The CRC error mechanism shares the same XLERT_n signal as CA parity for reporting write errors to the DRAM. The controller has two ways to distinguish between CRC errors and CA parity errors: 1) Read DRAM mode/MPR registers, and 2) Measure time ALERT_n is LOW. To speed up recovery for CRC errors, CRC errors are only sent back as a "short" pulse; the maximum pulse width is roughly ten clocks (unlike CA parity where ALERT_n is LOW longer than 45 clocks). The ALERT_packW could be longer than the maximum limit at the controller if there are multiple CRC errors as the ALERT_n signal is defined as tCRC_ALERT in the following nature.


The DRAM will set the error status bit located at MR5[3] to a 1 upon detecting a CRC error, which will subsequently set the CRC error status flag in the MPR error log HIGH (MPR Page1, MPR3[7]). The CRC error status bit (and CRC error status flag) remains set at 1 until the DRAM controller clears the CRC error status bit using an MRS command to set MR5[3] to a 0. The DRAM controller, upon seeing an error as a pulse width, will retry the write transactions. The controller should consider the worst-case delay for ALERT_n (during initialization) and backup the transactions accordingly. The DRAM controller may also be made more intelligent and correlate the write CRC error to a specific rank or a transaction.

Notes: 1. D[71:1] CRC computed by DRAM did not match CRC[7:0] and started error generating process at T6.

2. CRC ALERT_PW is specified from the point where the DR M starts to drive the signal LOW to the point where the DRAM driver releases and the controller starts to pull the

Data Bus Inversion

DATA BUS INVERSION (DBI) opportunistically inverts data bits, and in conjunction with the DBI_n I/O, less than half of the DQs will switch LOW for a given DQS strobe edge. The DBI function shares a common pin with the DATA MASK (DM) and TDQS functions. The DBI function applies to either or both READ and WRITE oper-ations: Write DBI cannot be enabled at the same time the DM function is enabled, and DBI is not allowed during MPR READ operation. Valid configurations for TDQS, DM, and DBI functions are shown below.

TABLE 124: DBI vs. DM vs. TDQS Function Matrix										
Read DBI Write DBI Data Mask (DM) TDQS (x8 only)										
Enabled (or Disabled)	Disabled	Disabled	Disabled							
Enabled or Disabled	Enabled	Disabled	Disabled							
Enabled or Disabled	Disabled	Enabled	Dyabled							
Disabled	Disabled	Disabled	E abled							

DBI During a WRITE Operation

If DBI_n is sampled LOW on a given byte lane during a WRITE operation, the DRAM inverts write data received on the DQ inputs prior to writing the internal memory array. If DbY it is sampled HIGH on a given byte lane, the DRAM leaves the data received on the DQ inputs noninverted. The write DQ frame format is shown below for x8 and x16 configurations (the x4 configuration does not support the DBI function).

TABLE 125: DBI WRITE, DQ FRAME FORMAT												
	Transfer, Lower (L) and Upper(U)											
Function	0	1	CV	3	4	5	6	7				
DQ[7:0]	LByte 0	LByte 1	byte 2	LByte 3	LByte 4	LByte 5	LByte 6	LByte 7				
LDM_n or	LDM0 or	LDM1 or	LDM2 or	LDM3 or	LDM4 or	LDM5 or	LDM6 or	LDM7 or				
LDBI_n	LDBI0	LDBI	LDBI2	LDBI3	LDBI4	LDBI5	LDBI6	LDBI7				
DQ[15:8]	UByte 0	UPyte 1	UByte 2	UByte 3	UByte 4	UByte 5	UByte 6	UByte 7				
UDM_n or	UDM0 or	DOM or	UDM2 or	UDM3 or	UDM4 or	UDM5 or	UDM6 or	UDM7 or				
UDBI_n	UDBI0	⊌DBI1	UDBI2	UDBI3	UDBI4	UDBI5	UDBI6	UDBI7				

DBI During a READ Operation

If the number of 0 data bits within a given byte lane is greater than four during a READ operation, the DRAM inverts read data on its DQ outputs and drives the DBI_n pin LOW; otherwise, the DRAM does not invert the read data and drives the DBI_n pin HIGH.

TABLE 126: DBI READ, DQ FRAME FORMAT												
	Transfer Byte, Lower (L) and Upper(U)											
Function	0	1	2	3	4	5	6	7				
DQ[7:0]	LByte 0	LByte 1	LByte 2	LByte 3	LByte 4	LByte 5	LByte 6	LByte 7				
LDBI_n	LDBI0	LDBI1	LDBI2	LDBI3	LDBI4	LDBI5	LDBI6	LDBI7				
DQ[15:8]	UByte 0	UByte 1	UByte 2	UByte 3	UByte 4	UByte 5	UByte 6	UByte 7				
UDBI_n	UDBI0	UDBI1	UDBI2	UDBI3	UDBI4	UDBI5	UDBI6	UDBI7				

Data Mask

The DATA MASK (DM) function is also described as PARTIAL WRITE. The DM function shares a common pin with the DBI_n and TDQS functions. The DM function applies only to WRITE operations and cannot be enabled at the same time the WRITE DBI function is enabled. The valid configurations for the TDQS, DM, and DBI functions are shown here.

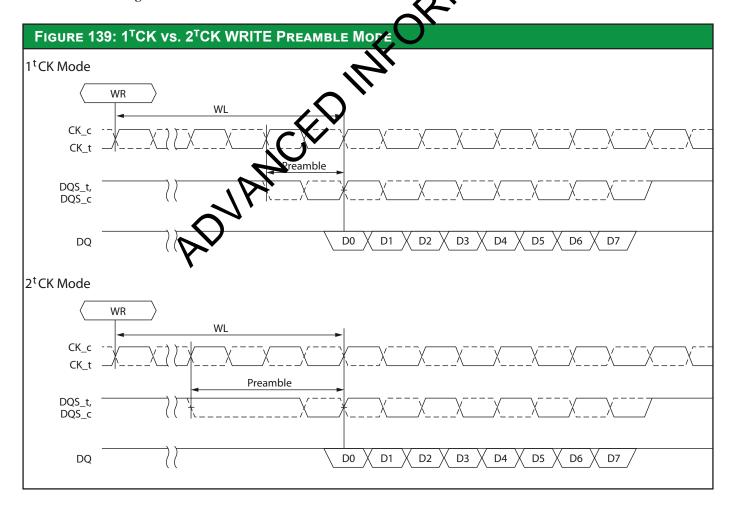
TABLE 127: DM vs. TDQS vs. DBI Function Matrix					
Data Mask (DM)	TDQS (x8 only)	Write DBI	Read DBI		
Enabled	Disabled	Disabled	Enabled or Disabled		
Disabled	Enabled	Disabled	Disabled		
	Disabled	Enabled	Enabled or Disabled		
	Disabled	Disabled	Enabled (of Disabled)		

When enabled, the DM function applies during a WRITE operation. If DM_n is sampled LOW on a given byte lane, the DRAM masks the write data received on the DQ inputs. If DM_n is sampled HIGH on a given byte lane, the DRAM does not mask the data and writes this data into the DRAM core The DQ frame format for x8 and x16 configuration is shown below. If both CRC write and DM are enabled (via MRS), the CRC will be checked and valid prior to the DRAM writing data into the DRAM core. If a CRC error orders while the DM feature is enabled, CRC write persistent mode will be enabled and data will not be written into the DRAM core. In the case of CRC write enabled and DM disabled (via MRS), that is, CRC write nonpelsistent mode, data is written to the DRAM core even if a CRC error occurs.

TABLE 128: DATA MASK, DQ FRAME FORMAT								
	kraylsfer, Lower (L) and Upper (U)							
Function	0	1		3	4	5	6	7
DQ[7:0]	LByte 0	LByte 1	LRyte 2	LByte 3	LByte 4	LByte 5	LByte 6	LByte 7
LDM_n or LDBI_n	LDM0 or LDBI0	LDM1 or LDBI1	LDM2 or LDBI2	LDM3 or LDBI3	LDM4 or LDBI4	LDM5 or LDBI5	LDM6 or LDBI6	LDM7 or LDBI7
DQ[15:8]	UByte 0	UByte 1	UByte 2	UByte 3	UByte 4	UByte 5	UByte 6	UByte 7
UDM_n or UDBI_n	UDM0 or UDBI0	IDM) or UDBI1	UDM2 or UDBI2	UDM3 or UDBI3	UDM4 or UDBI4	UDM5 or UDBI5	UDM6 or UDBI6	UDM7 or UDBI7

Programmable Preamble Modes and DQS Postambles

The device supports programmable WRITE and READ preamble modes, either the normal 1^t CK preamble mode or special 2^t CK preamble mode. The 2^t CK preamble mode places special timing constraints on many operational features as well as being supported for data rates of DDR4-2400 and faster. The WRITE preamble 1^t CK or 2^t CK mode can be selected independently from READ preamble 1^t CK or 2^t CK mode.


READ preamble training is also supported; this mode can be used by the DRAM controller to train or "read level" the DQS receivers.

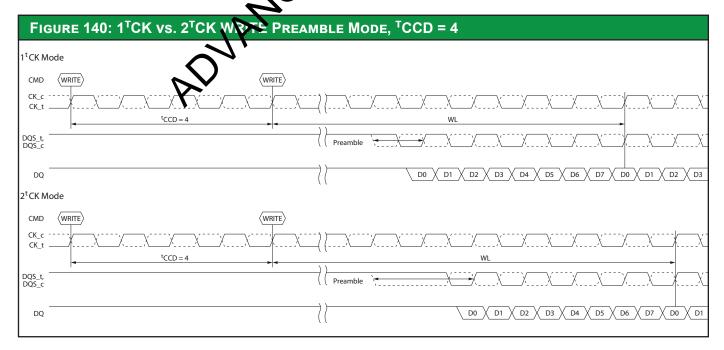
There are ^tCCD restrictions under some circumstances:

- When 2^tCK READ preamble mode is enabled, a ^tCCD_S or ^tCCD_L of 5 clocks is not allowed.
- When 2^tCK WRITE preamble mode is enabled and write CRC is not enabled, a ^tCCD_S or ^tCCD_L of 5 clocks is not allowed.
- When 2^tCK WRITE preamble mode is enabled and write CRC is enabled, a ^tCCD_S or ^tCCD_L of 6 clocks is not allowed.

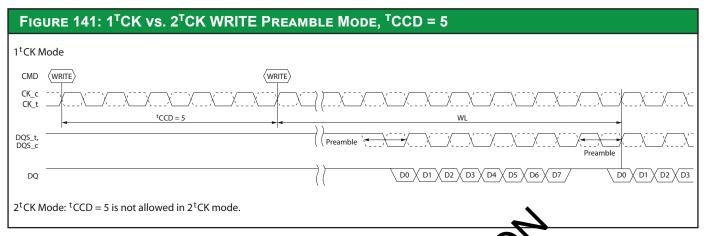
WRITE Preamble Mode

MR4[12] = 0 selects 1^tCK WRITE preamble mode while MR4[12] = 1 selects 2^tCK WRITE preamble mode. Examples are shown in the figures below.

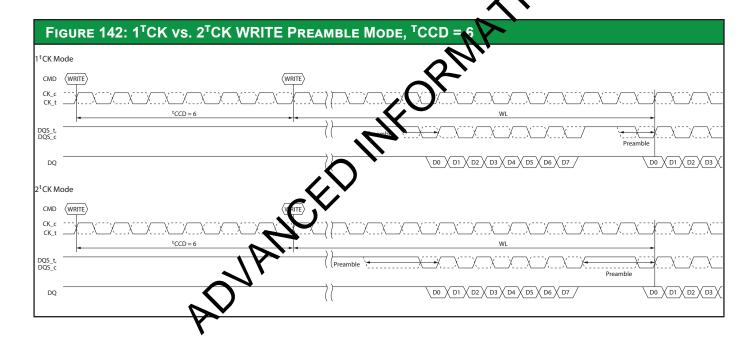
ST9D4512M40DBG0

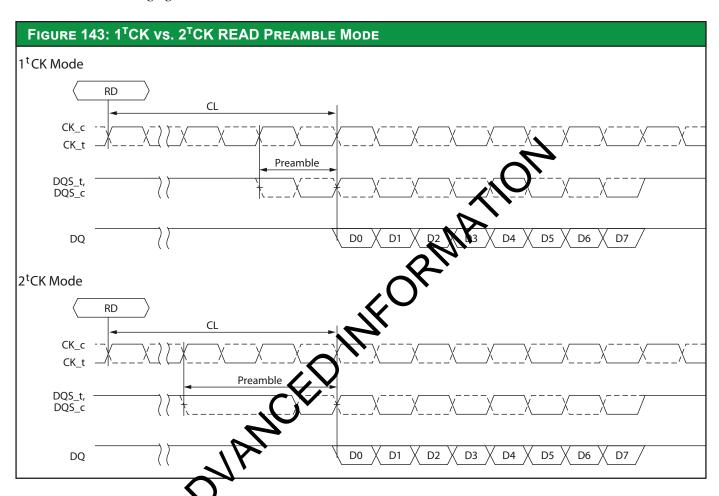


CWL has special considerations when in the 2tCK WRITE preamble mode. The CWL value selected in MR2[5:3], as seen in table below, requires at least one additional clock when the primary CWL value and 2tCK WRITE preamble mode are used; no additional clocks are required when the alternate CWL value and 2tCK WRITE preamble mode are used.

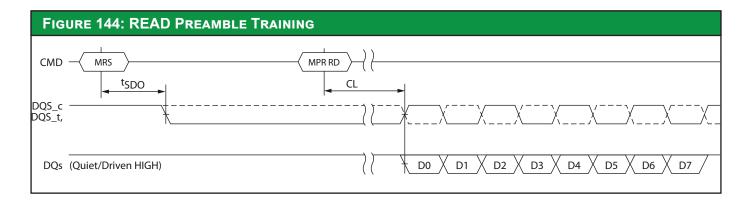

TABLE 129: CWL SELECTION					
	CWL - Primary Choice		CWL - Alternate Choice		
Speed Bin	1 ^t CK Preamble	2 ^t CK Preamble	1 ^t CK Preamble	2 ^t CK Preamble	
DDR4-1600	9	N/A	11	N/A	
DDR4-1866	10	N/A	12	N/A	
DDR4-2133	11	N/A	14	N/A	
DDR4-2400	12	14	16	16	
DDR4-2666	14	16	<i>J</i> 6\(\text{\tint{\text{\tin}\text{\text{\text{\text{\text{\text{\text{\text{\tex{\tex	18	
DDR4-2933	16	18	2	20	
DDR4-3200	16	18	20	20	

Note: 1. CWL programmable requirement for NR25:3].

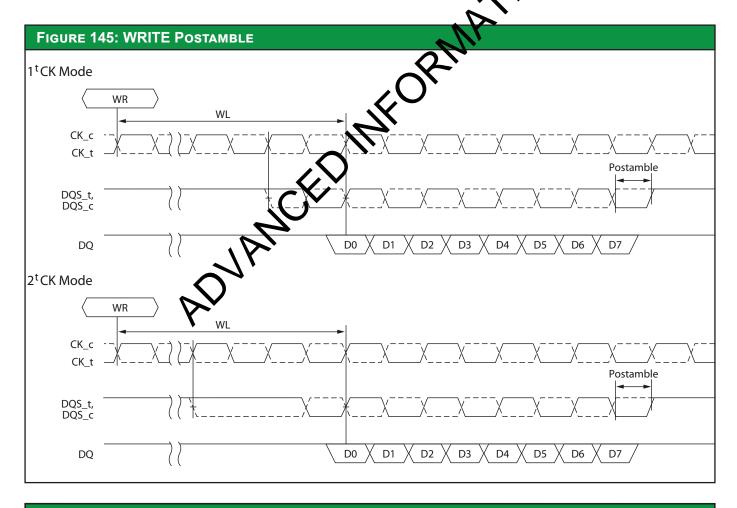

When operating in 2^tCK WRITE preamble mode, ^tWTR (command based) and ^tWR (MR0[11:9]) must be programmed to a value 1 clock greater than the ^tWTR and ^tWR setting normally required for the applicable speed bin to be JEDEC compliant; however, STACKED's DDR4 DRAM's to not require these additional tWTR and ^tWR clocks. The CAS_n-to-CAS_n command delay to either a different bank group (^tCCD_S) or the same bank group (^tCCD_L) have minimum timing requirements that must be satisfied between WRITE commands and are stated in the Timing Parameters by Speed Bin tables. When operating in 2^tCK WRITE preamble mode, ^tCCD_S and ^tCCD_L must also be an even number of clocks. As an example, if the minimum timing specification requires only 5^tCK, the 5^tCK has to be rounded up to 6^tCK when operating in 2^tCK WRITE preamble mode, while 5^tCK would be acceptable if operating in 1^tCK WRITE preamble mode.


Note: 1. ^tCCD_S and ^tCCD_L = 5 ^tCKs is not allowed when in 2 CK WRITE preamble mode.

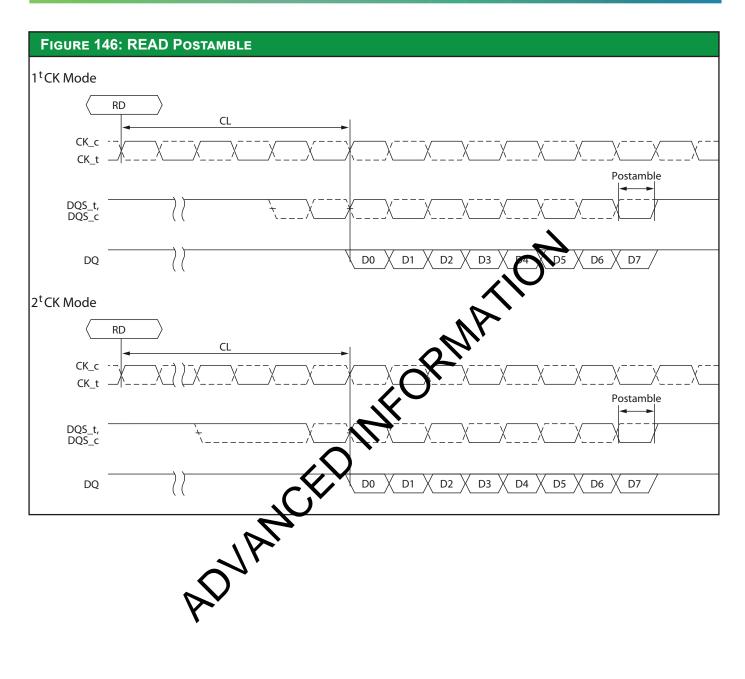
READ Preamble Mode


MR4[11] = 0 selects 1^tCK READ preamble mode and MR4[12] = 1 selects 2^tCK READ preamble mode. Examples are shown in the following figure.

READ Preamble Training

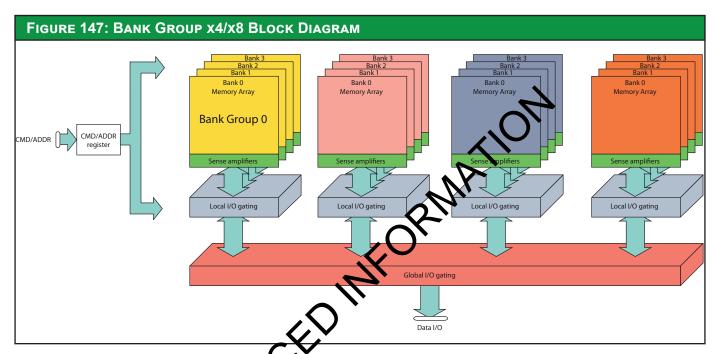

DDR4 supports READ preamble training via MPR reads; that is, READ preamble training is allowed only when the DRAM is in the MPR access mode. The READ preamble training mode can be used by the DRAM controller to train or "read level" its DQS receivers. READ preamble training is entered via an MRS command (MR4[10] = 1 is enabled and MR4[10] = 0 is disabled). After the MRS command is issued to enable READ preamble training, the DRAM DQS signals are driven to a valid level by the time tSDO is satisfied. During this time, the data bus DQ signals are held quiet, that is, driven HIGH. The DQS_t signal remains driven LOW and the DQS_c signal remains driven HIGH until an MPR Page0 READ command is issued (MPR0 through MPR3 determine which pattern is used), and when CAS latency (CL) has expired, the DQS signals will toggle normally depending on the burst length setting. To exit READ preamble training mode, an MRS command must be issued, MR4[10] = 0.

WRITE Postamble


Whether the 1 t CK or 2 t CK WRITE preamble mode is selected, the WRITE postarble remains the same at $\frac{1}{2}$ t CK.

READ Postamble

Whether the 1^tCK or 2^tCK READ preamble mode is selected, the READ postamble remains the same at ½^tCK.



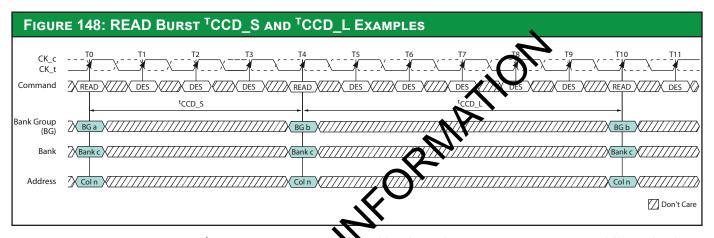
Bank Access Operation

DDR4 supports bank grouping four subbanks (BA[1:0]); x16 DRAMs have two bank groups (BG[0]), and each bank group is comprised of four subbanks. Bank accesses to different banks' groups require less time delay between accesses than bank accesses to within the same bank's group. Bank accesses to different bank groups require ^tCCD_S (or short) delay between commands while bank accesses within the same bank group require ^tCCD_L (or long) delay between commands.

Notes: 1. Bank accesses to different bank groups require ^tCCD_S.

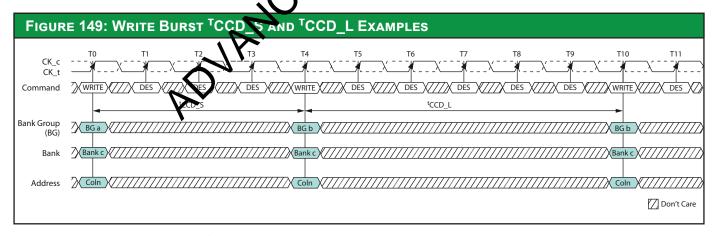
2. Bank access within the same bank group require ^tCCD_L.

Parameter	DDR4-1600	DDR4-2133	DDR4-2400	
^t CCD S	4nCK	4nCK	4nCK	
tCCD_	4nCK or 6.25ns	4nCK or 5.355ns	4 <i>n</i> CK or 5ns	
^t RRD_S (½K)	4nCK or 5ns	4 <i>n</i> CK or 3.7ns	4 <i>n</i> CK or 3.3ns	
^t RRD_L (½K)	4nCK or 6ns	4nCK or 5.3ns	4 <i>n</i> CK or 4.9ns	
^t RRD_S (1K) 4 <i>n</i> CK or 5ns		4 <i>n</i> CK or 3.7ns	4 <i>n</i> CK or 3.3ns	
^t RRD_L (1K)	4nCK or 6ns	4 <i>n</i> CK or 5.3ns	4 <i>n</i> CK or 4.9ns	
tRRD_S (2K)	4nCK or 6ns	4nCK or 5.3ns	4 <i>n</i> CK or 5.3ns	
tRRD_L (2K)	4nCK or 7.5ns	4 <i>n</i> CK or 6.4ns	4 <i>n</i> CK or 6.4ns	



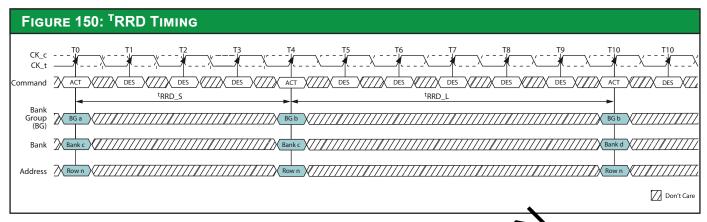
Bank Access Operation

Table 130: DDR4 Bank Group Timing Examples (Continued)					
Parameter	DDR4-1600	DDR4-2133	DDR4-2400		
^t WTR_S	2 <i>n</i> CK or 2.5ns	2 <i>n</i> CK or 2.5ns	2 <i>n</i> CK or 2.5ns		
tWTR_L	4 <i>n</i> CK or 7.5ns	4nCK or 7.5ns	4nCK or 7.5ns		

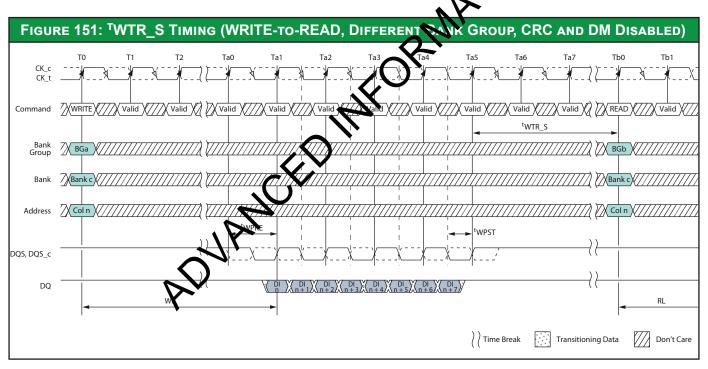

Notes:

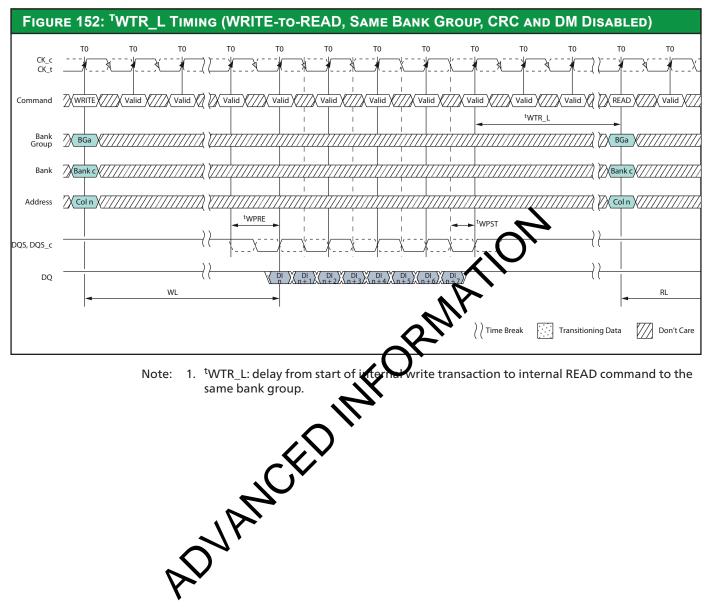
- 1. Refer to Timing Tables for actual specification values, these values are shown for reference only and are not verified for accuracy.
- 2. Timings with both nCK and ns require both to be satisfied; that is, the larger time of the two cases must be satisfied.

Notes: 1. tCCD_S; CAS_n-to-CAS_n Veray (short). Applies to consecutive CAS_n to different bank groups (T0 to T4).


 CCD_L; CAS_n to CAS_n delay (long). Applies to consecutive CAS_n to the same bank group (T4 to ₹13).

Notes: 1. ^tCCD_S; CAS_n-to-CAS_n delay (short). Applies to consecutive CAS_n to different bank groups (T0 to T4).


2. ^tCCD_L; CAS_n-to-CAS_n delay (long). Applies to consecutive CAS_n to the same bank group (T4 to T10).


Notes: 1. ^tRRD_S; ACTIVATE-to-ACTIVATE command period (short): ppries to consecutive ACTI-VATE commands to different bank groups (T0 and T4).

2. ^tRRD_L; ACTIVATE-to-ACTIVATE command period (long), applies to consecutive ACTIVATE commands to the different banks in the same bank group (T4 and T10).

Note: 1. ^tWTR_S: delay from start of internal write transaction to internal READ command to a different bank group.

write transaction to internal READ command to the

READ Operation

Read Timing Definitions

The read timings shown below are applicable in normal operation mode, that is, when the DLL is enabled and locked.

Note: ^tDQSQ = both rising/falling edges of DQS; no ^tAC defined.

Rising data strobe edge parameters:

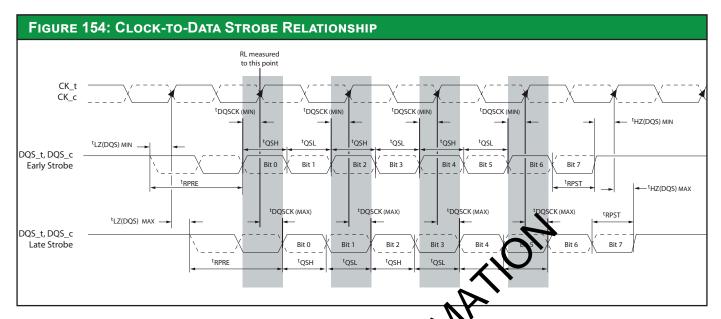
- ^tDQSCK (MIN)/(MAX) describes the allowed range for a rising data strobe edge relative to CK.
- ^tDQSCK is the actual position of a rising strobe edge relative to CK.
- tQSH describes the DQS differential output HIGH time.
- ^tDQSQ describes the latest valid transition of the associated DQ pins.
- QSL describes the DQS differential output LOW time.

 ¹DQSQ describes the latest valid transition of the associated DQ pins.

 ¹QH describes the earliest invalid transition of the associated DQ pins. • tQH describes the earliest invalid transition of the associated DQ pins.

Read Timing - Clock-to Data Strobe Relationship

The clock-to-data strobe reasonship shown below is applicable in normal operation mode, that is, when the DLL is enabled and locked.


Rising data strobe edge parameters:

- tDQSCK (MIN)/(MAX) describes the allowed range for a rising data strobe edge relative to CK.
- tDQSCK is the actual position of a rising strobe edge relative to CK.
- tQSH describes the data strobe high pulse width.
- tHZ(DQS) DQS strobe going to high, nondrive level (shown in the postamble section of the figure below).

Falling data strobe edge parameters:

- tQSL describes the data strobe low pulse width.
- tLZ(DQS) DQS strobe going to low, initial drive level (shown in the preamble section of the figure below).

- Notes: 1. Within a burst, the rising strobe edge w within ^tDQSCKj while at the same voltage and temperature. However, when the pevice, voltage, and temperature variations e variance window can shift between ^tDQSCK are incorporated, the rising strol (MIN) and ^tDQSCK (MAX).
 - edge (latest) from rising CK_t, CK_c is limited by a device's A timing of this window's right actual ^tDQSCK (MAX). of this window's left inside edge (earliest) from rising CK_t, CK_c is limited by SCK (MIN).
 - 2. Notwithstanding Note 1, a rising strobe edge with ^tDQSCK (MAX) at T(n) can not be immediately followed a rising strobe edge with ^tDQSCK (MIN) at T(n + 1) because other tips (${}^{t}QSH$, ${}^{t}QSL$) exist: if ${}^{t}DQSCK(n + 1) < 0$: ${}^{t}DQSCK(n) < 1.0 {}^{t}CK - ({}^{t}QSH)$ timing relation $(MIN) + {}^{t}QL(MIN)$ - | ^tDQSCK(n + 1) |.
 - _c differential output HIGH time is defined by ^tQSH, and the DQS_t, The DQS ential output LOW time is defined by tQSL.
 - MIN and tHZ(DQS) MIN are not tied to tDQSCK (MIN) (early strobe case), and DQS) MAX and ${}^{t}HZ(DQS)$ MAX are not tied to ${}^{t}DQSCK$ (MAX) (late strobe case). ninimum pulse width of READ preamble is defined by ^tRPRE (MIN).
 - he maximum READ postamble is bound by ^tDQSCK (MIN) plus ^tQSH (MIN) on the left side and ^tHZDSQ (MAX) on the right side.
 - 7. The minimum pulse width of READ postamble is defined by tRPST (MIN).
 - The maximum READ preamble is bound by ^tLZDQS (MIN) on the left side and ^tDQSCK (MAX) on the right side.

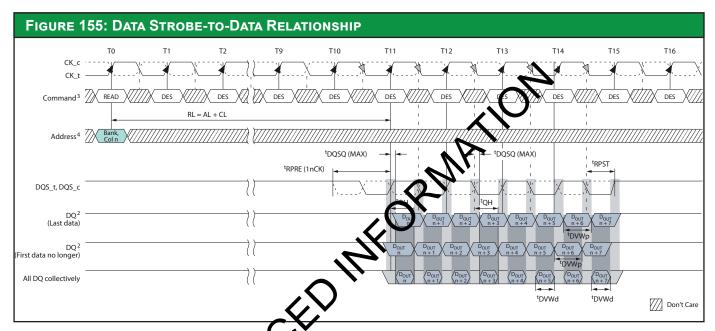
Read Timing - Data Strobe-to-Data Relationship

The data strobe-to-data relationship is shown below and is applied when the DLL is enabled and locked.

Note: tDQSQ: both rising/falling edges of DQS; no tAC defined.

Rising data strobe edge parameters:

- ^tDQSQ describes the latest valid transition of the associated DQ pins.
- tQH describes the earliest invalid transition of the associated DQ pins.


Falling data strobe edge parameters:

- ^tDQSQ describes the latest valid transition of the associated DQ pins.
- tQH describes the earliest invalid transition of the associated DQ pins.

Data valid window parameters:

- ^tDVWd is the Data Valid Window per device per UI and is derived from [tQH tDQSQ] of each UI on a given DRAM
- ^tDVWp is the Data Valid Window per pin per UI and is derived [tQH tDQSQ] of each UI on a pin of a given DRAM

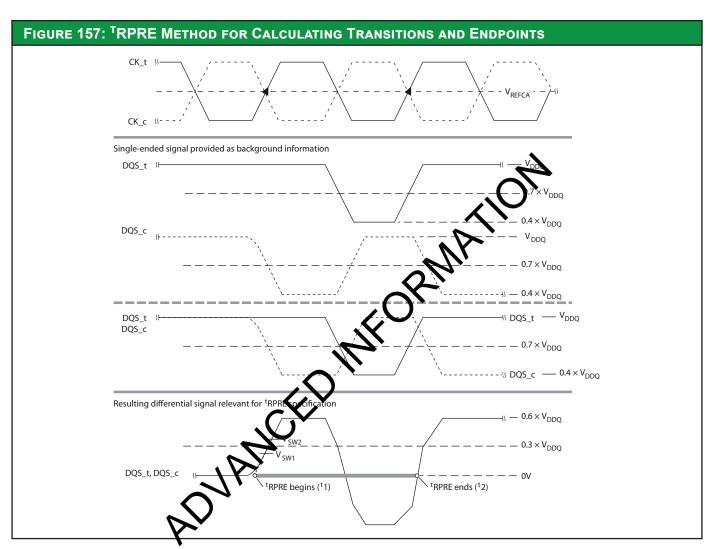
Notes: 1. BL = 8, RL = 11 (AL = 0, CL = 1), Premable = 1^{t} CK.

- 2. DOUTreadta-out from column n.
- 3. DES commands are shown for ease of illustration; other commands may be valid at these times
- BESize Setting activated by either MR0[A1:0 = 00] or MR0[A1:0 = 01] and A12 = 1 during BEAD commands at T0.
- SOutput timings are referenced to VDDQ, and DLL on for locking.
- 6. ^tDQSQ defines the skew between DQS to data and does not define DQS to clock.
- 7. Early data transitions may not always happen at the same DQ. Data transitions of a DQ can vary (either early or late) within a burst.

^tLZ(DQS), ^tLZ(DQ), ^tHZ(DQS), and ^tHZ(DQ) Calculations

 t HZ and t LZ transitions occur in the same time window as valid data transitions. These parameters are referenced to a specific voltage level that specifies when the device output is no longer driving t HZ(DQS) and t HZ(DQ), or begins driving t LZ(DQS) and t LZ(DQ). The figure below shows a method to calculate the point when the device is no longer driving t HZ(DQS) and t HZ(DQ), or begins driving t LZ(DQS) and t LZ(DQ), by measuring the signal at two different voltages. The actual voltage measurement points are not critical as long as the calculation is consistent. t LZ(DQS), t LZ(DQS), t HZ(DQS), and t HZ(DQS) are defined as singled-ended parameters.

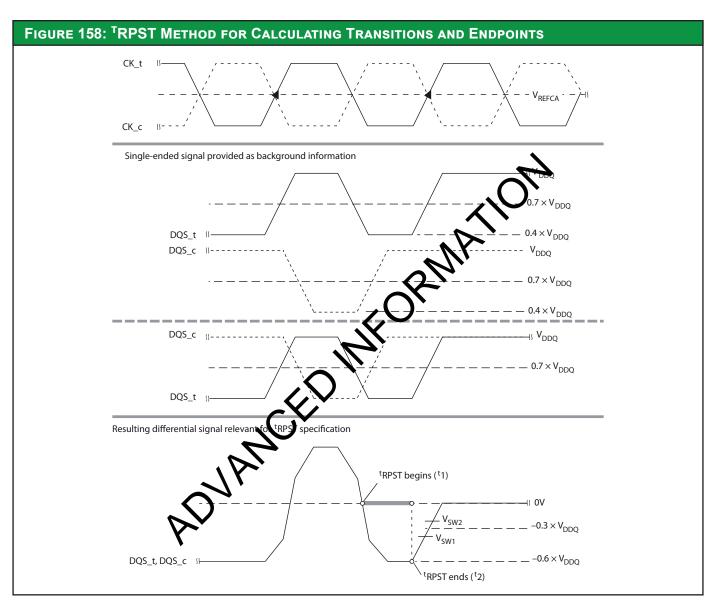
FIGURE 156: TLZ AND THZ METHOD FOR CALCULATING TRANSITIONS AND ENDPOINTS $^{t}HZ(DQ)$ with BL8: CK_t, CK_c rising crossing at RL + 4CK ^tLZ(DQ): CK_t, CK_c rising crossing at RL ^tHZ(DQ) with BC4: CK_t, CK_c rising crossing at RL + 2CK CK_t CK_c tLZ $^{\rm t}$ HZ Begin point: Extrapolated point at V V_{DDQ} DQ IF -IIDQ $-V_{DDQ}$ V_{SW2} $0.4 \times V_{DDQ}$ $0.4 \times V_{DDQ}$


- Notes: 1. $V_{sw1} = (0.70 0.04) \times V_{DDQ}$ for both
 - 2. $V_{sw2} = (0.70 + 0.04) \times V_{DDQ}$ for both
 - 3. Extrapolated point (low level) $/(50 + 34) \times 34 = 0.4 \times V_{DDQ}$ Driver impedance = RZQ/7 V_{TT} test load = 50Ω to V_{R} ADVANCED

STACKED Technologies Incorporated

rapolated point (low level)

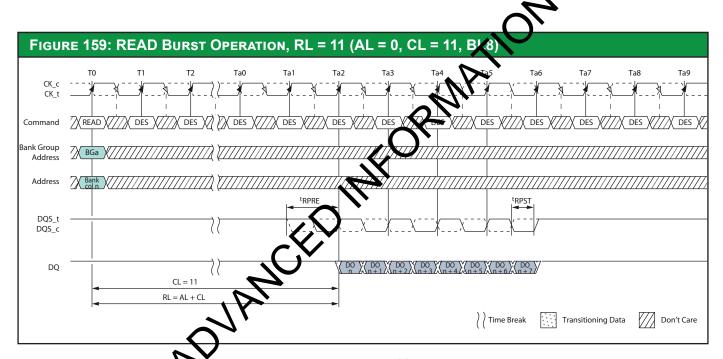
ST9D4512M40DBG0


^tRPRE Calculation

- Notes: 1. $V_{sw1} = (0.3 0.04) \times VDDQ$.
 - 2. $V_{sw2} = (0.30 + 0.04) \times VDDQ$.
 - 3. DQS_t and DQS_c low level = $V_{DDQ}/(50 + 34) \times 34 = 0.4 \times V_{DDQ}$ Driver impedance = RZQ/7 = 34Ω V_{TT} test load = 50Ω to V_{DDO} .

^tRPST Calculation

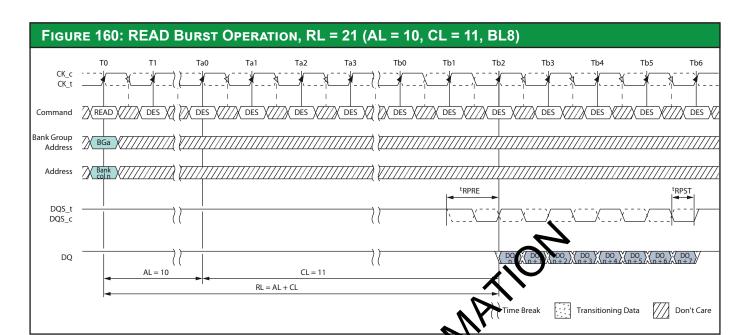
- Notes: 1. $V_{sw1} = (-0.3 0.04) \times V_{DDQ}$.
 - 2. $V_{sw2} = (-0.30 + 0.04) \times V_{DDQ}$.
 - 3. 3. DQS_t and DQS_c low level = $V_{DDQ}/(50 + 34) \times 34 = 0.4 \times V_{DDQ}$ Driver impedance = RZQ/7 = 34Ω V_{TT} test load = 50Ω to V_{DDQ} .


READ Burst Operation

DDR4 READ commands support bursts of BL8 (fixed), BC4 (fixed), and BL8/BC4 on-the-fly (OTF); OTF uses address A12 to control OTF when OTF is enabled:

- A12 = 0, BC4 (BC4 = burst chop)
- A12 = 1, BL8

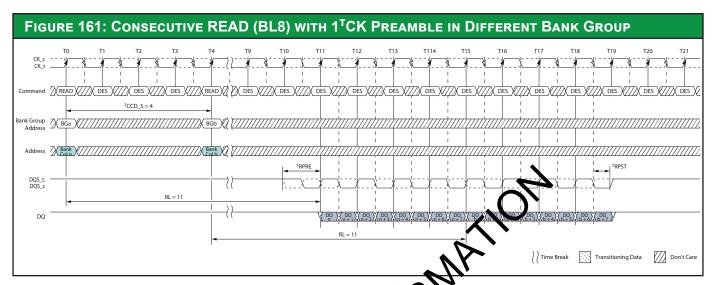
READ commands can issue precharge automatically with a READ with auto precharge command (RDA), and is enabled by A10 HIGH:


- READ command with A10 = 0 (RD) performs standard read, bank remains active after READ burst.
- READ command with A10 = 1 (RDA) performs read with auto precharge, bank goes in to precharge after READ burst.

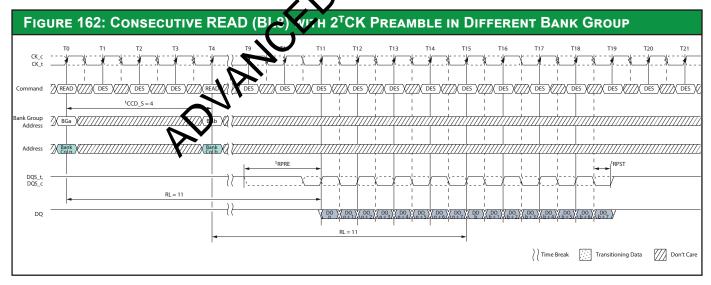
Notes. RL = 0, AL = 0, CL = 11, Preamble = 1tCK.

- 2. DO n = data-out from column n.
- 3. DES commands are shown for ease of illustration; other commands may be valid at these times.
- 4. BL8 setting activated by either MR0[1:0] = 00 or MR0[1:0] = 01 and A12 = 1 during READ command at T0.
- 5. CA parity = Disable, CS to CA latency = Disable, Read DBI = Disable.

ST9D4512M40DBG0

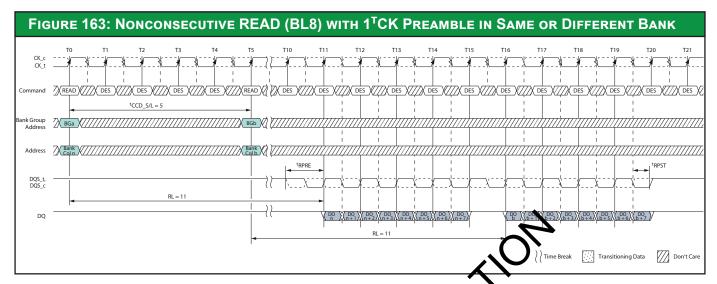

otes: 1. BL8, RL = 21, AL = (CL - 1), CL = 11, Plantale = 1^tCk

2. $DO n = data-out from column n_a$

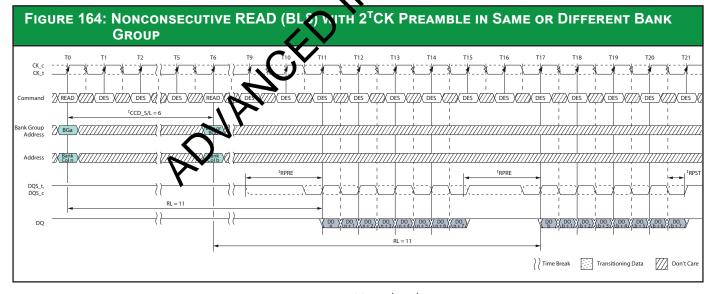

- 3. DES commands are shown for easy illustration; other commands may be valid at these times.
- 4. BL8 setting activated by extner MR0[1:0] = 00 or MR0[1:0] = 01 and A12 = 1 during READ command at T0.
- 5. CA parity = Disable. CS to CA latency = Disable, Read DBI = Disable.

ST9D4512M40DBG0

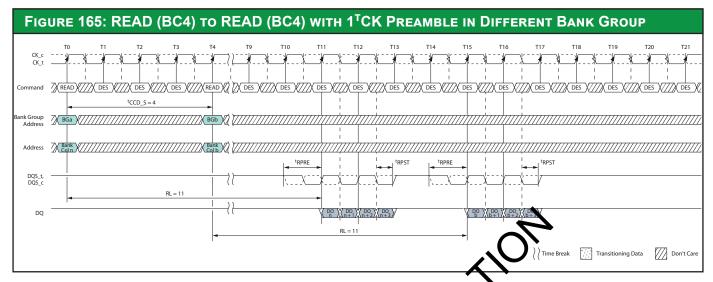
READ Operation Followed by Another READ Operation



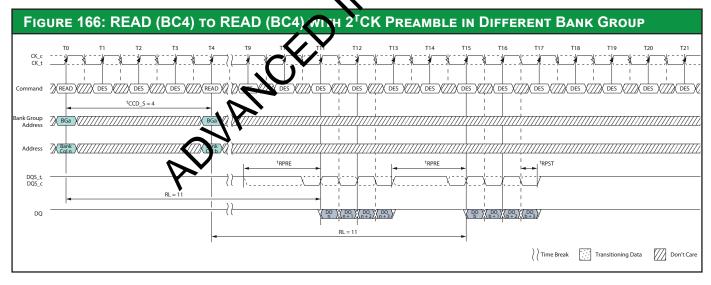
- 1. BL8, AL = 0, CL = 11, Preamble = 1^{t} CK.
- 2. DO n (or b) = data-out from col column b).
- 3. DES commands are shown for ea se of illustration; other commands may be valid at these times.
- 4. BL8 setting activated by MR0[1:0] = 00 or MR0[1:0] = 01 and A12 = 1 during READ commands at T0 and T4
- 5. CA parity = Disable to \overline{CA} latency = Disable, Read DBI = Disable.



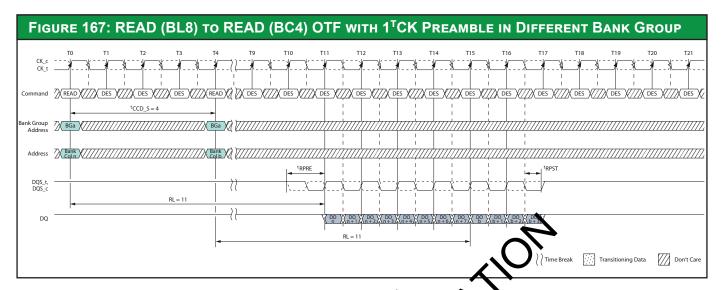
- Notes: 1. BL8, AL = 0, CL = 11, Preamble = $2^{t}CK$.
 - 2. DO n (or b) = data-out from column n (or column b).
 - 3. DES commands are shown for ease of illustration; other commands may be valid at these times.
 - 4. BL8 setting activated by either MR0[1:0] = 00 or MR0[1:0] = 01 and A12 = 1 during READ commands at T0 and T4.
 - 5. CA parity = Disable, CS to CA latency = Disable, Read DBI = Disable.



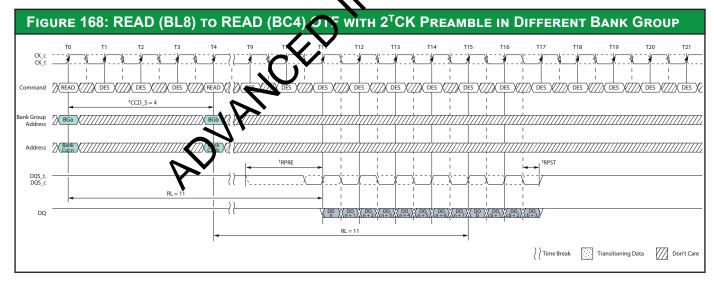
- Notes: 1. BL8, AL = 0, CL = 11, Preamble = 1^tCK, tCCD
 - 2. DO n (or b) = data-out from column n (or a
 - 3. DES commands are shown for ease of ill tion; other commands may be valid at these times.
 - 4. BL8 setting activated by either M) = 00 or MR0[1:0] = 01 and A12 = 1 during READ commands at T0 and T5.
 - tency = Disable, Read DBI = Disable. 5. CA parity = Disable, CS to CA



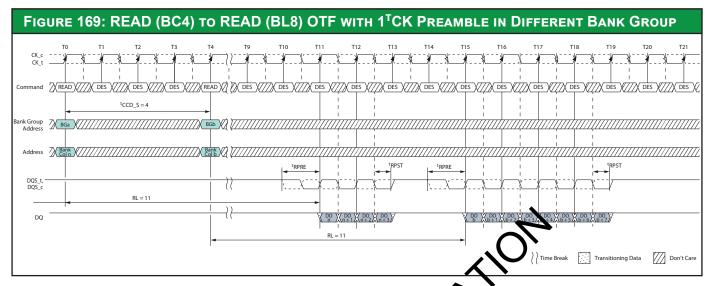
- Notes: 1. BL8, AL = 0, CL = 11, Preamble = $2^{t}CK$, ${^{t}CCD_S/L} = 6$.
 - 2. DO n (or b) = data-out from column n (or column b).
 - 3. DES commands are shown for ease of illustration; other commands may be valid at these times.
 - 4. BL8 setting activated by either MR0[A1:0 = 00] or MR0[A1:0 = 01] and A12 = 1 during READ commands at T0 and T6.
 - 5. CA parity = Disable, CS to CA latency = Disable, Read DBI = Disable.
 - 6. $6^{t}CCD_S/L = 5$ isn't allowed in $2^{t}CK$ preamble mode.



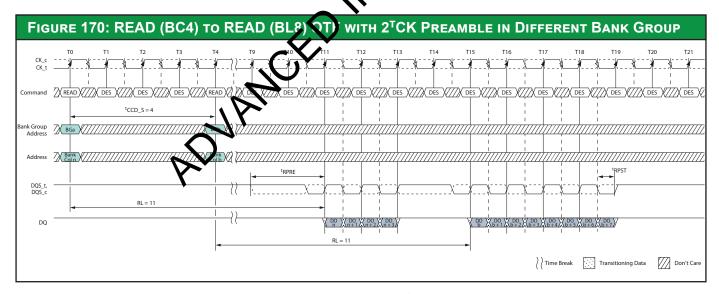
- Notes: 1. BL8, AL = 0, CL = 11, Preamble = $1^{\dagger}CK$.
 - 2. DO n (or b) = data-out from column n (or c)
 - 3. DES commands are shown for ease of j tion; other commands may be valid at these times.
 - 4. BC4 setting activated by either I [0] = 10 or MR0[1:0] = 01 and A12 = 0 during READ commands at T0 and T4.
 - tency = Disable, Read DBI = Disable. 5. CA parity = Disable, CS to C



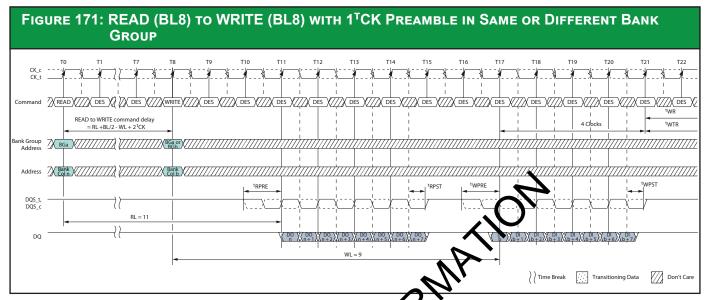
- Notes: 1. BL8, AL = 0, CL = 11, Preamble = $2^{t}CK$.
 - 2. DO n (or b) = data-out from column n (or column b).
 - 3. DES commands are shown for ease of illustration; other commands may be valid at these times.
 - 4. BC4 setting activated by either MR0[1:0] = 10 or MR0[1:0] = 01 and A12 = 0 during READ commands at T0 and T4.
 - 5. CA parity = Disable, CS to CA latency = Disable, Read DBI = Disable.

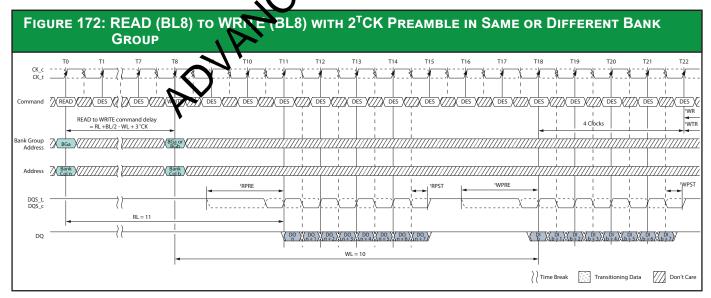


- Notes: 1. BL8, AL = 0, CL = 11, Preamble = $1^{t}CK$.
 - 2. DO n (or b) = data-out from column n (or c)
 - 3. DES commands are shown for ease of tion; other commands may be valid at these times.
 - 4. BC4 setting activated by either [0] = 10 or MR0[1:0] = 01 and A12 = 0 during READcommands at T0 and T4.
 - 5. CA parity = Disable, CS to tency = Disable, Read DBI = Disable.

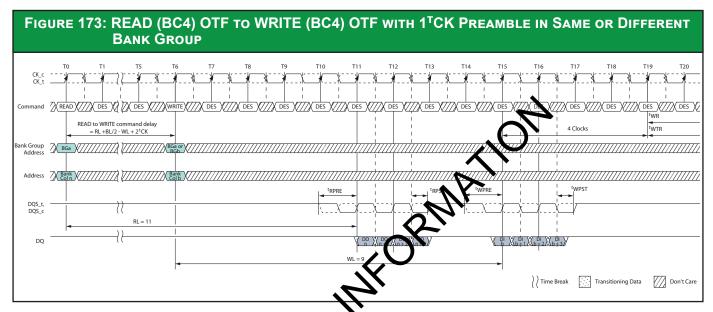


- Notes: 1. BL8, AL = 0, CL = 11, Preamble = $2^{t}CK$.
 - 2. DO n (or b) = data-out from column n (or column b).
 - 3. DES commands are shown for ease of illustration; other commands may be valid at these times.
 - 4. BC4 setting activated by either MR0[1:0] = 10 or MR0[1:0] = 01 and A12 = 0 during READ commands at T0 and T4.
 - 5. CA parity = Disable, CS to CA latency = Disable, Read DBI = Disable.

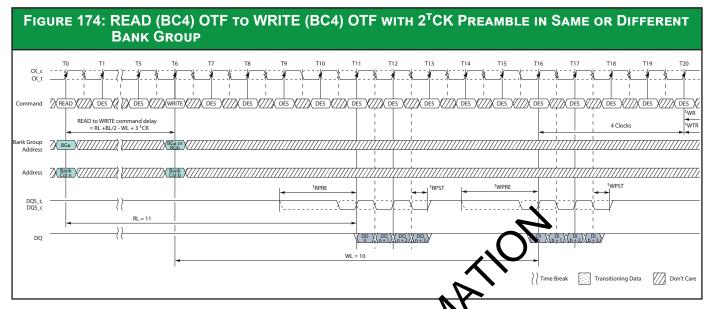

- 1. BL = 8, AL = 0, CL = 11, Preamble = 1^tCK.
- 2. DO n (or b) = data-out from column n (or column b).
- 3. DES commands are shown for ease of illumation; other commands may be valid at these times.
- 4. BC4 setting activated by MR0[1:0] = 1 and A12 = 0 during READ commands at T0. BL8 setting activated by MR0[1:0] = 01 and A12 = 1 during READ commands at T4.
- 5. CA parity = Disable, CS to CA latency = Disable, Read DBI = Disable.


- 1. BL = 8, AL = 0, CL = 11, $Preamble = 2^{t}CK$.
- 2. DO n (or b) = data-out from column n (or column b).
- 3. DES commands are shown for ease of illustration; other commands may be valid at these times.
- 4. BC4 setting activated by MR0[1:0] = 01 and A12 = 0 during READ commands at T0. BL8 setting activated by MR0[1:0] = 01 and A12 = 1 during READ commands at T4.
- 5. CA parity = Disable, CS to CA latency = Disable, Read DBI = Disable.

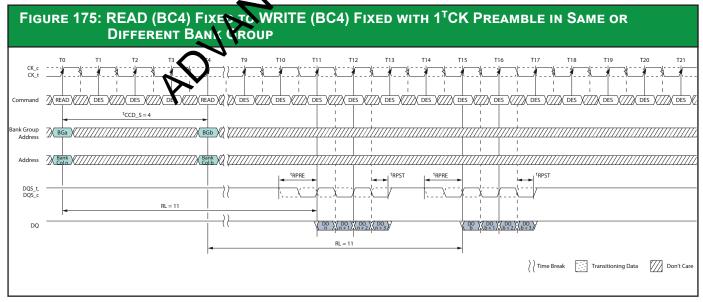
READ Operation Followed by WRITE Operation


- 1. BL = 8, RL = 11 (CL = 11, AL = 0), REAL preamble = 1^{t} CK, WL = 9 (CWL = 9, AL = 0), WRITE preamble = 1^{t} CK.
- 2. DO n = data-out from column n; D+b = data-in from column b.
- 3. DES commands are shown in case of illustration; other commands may be valid at these times.
- 4. BL8 setting activated by either MR0[1:0] = 00 or MR0[1:0] = 01 and A12 = 1 during READ commands at T0 and WRITE commands at T8.
- 5. CA parity = Disable, w to CA latency = Disable, Read DBI = Disable, Write DBI = Disable, Write CRC = Disable.

- Notes: 1. BL = 8, RL = 11 (CL = 11, AL = 0), READ preamble = $2^{t}CK$, WL = 10 (CWL = 9+1 [see Note 5], AL = 0), WRITE preamble = $2^{t}CK$.
 - 2. DO n = data-out from column n; DI b = data-in from column b.
 - 3. DES commands are shown for ease of illustration; other commands may be valid at these times.



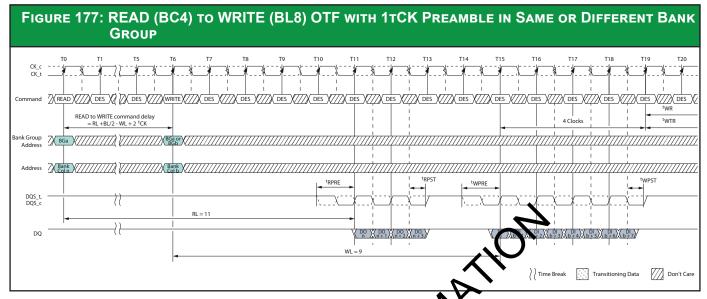
- 4. BL8 setting activated by either MR0[1:0] = 00 or MR0[1:0] = 01 and A12 = 1 during READ commands at T0 and WRITE commands at T8.
- 5. When operating in 2^tCK WRITE preamble mode, CWL may need to be programmed to a value at least 1 clock greater than the lowest CWL setting.
- 6. CA parity = Disable, CS to CA latency = Disable, Read DBI = Disable, Write DBI = Disable, Write CRC = Disable.



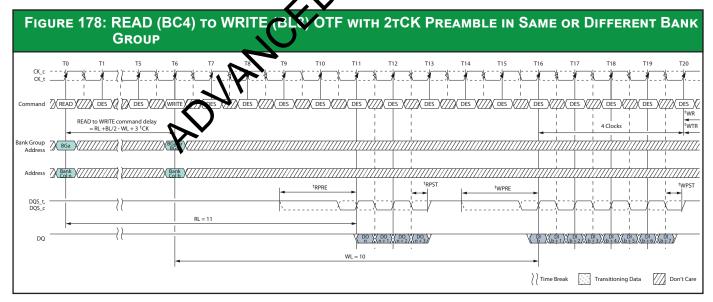
- 1. BC = 4, RL = 11 (CL = 1, AL = 0), READ preamble = $1^{t}CK$, WL = 9 (CWL = 9, AL = 0), WRITE preamble = ${}^{t}CK$.
- 2. DO n = data-out from column n; DI b = data-in from column b.
- 3. DES commends are shown for ease of illustration; other commands may be valid at these times
- 4. BC4 (QTI) setting activated by MR0[1:0] = 01 and A12 = 0 during READ commands at T0 and WRITE commands at T6.
- 5. SA varity = Disable, CS to CA latency = Disable, Read DBI = Disable, Write DBI = Disable, Write CRC = Disable.

- 1. BC = 4, RL = 11 (CL = 11, AL = 0), READ p $\frac{1}{2}$ be = 2^tCK, WL = 10 (CWL = 9 + 1 [see Note 5], AL = 0), WRITE preamble = 2^tCK.
- 2. DO n = data-out from column n; D+b \ \data-in from column b.
- 3. DES commands are shown for ease of illustration; other commands may be valid at these times.
- 4. BC4 (OTF) setting activated by MR0[1:0] = 01 and A12 = 0 during READ commands at T0 and WRITE commands at T6.
- 5. When operating in 2 CK WRITE preamble mode, CWL may need to be programmed to a value at least 1 clock gleater than the lowest CWL setting.
- 6. CA parity = Disable, CS to CA latency = Disable, Read DBI = Disable, Write DBI = Disable, Write CRC Disable.

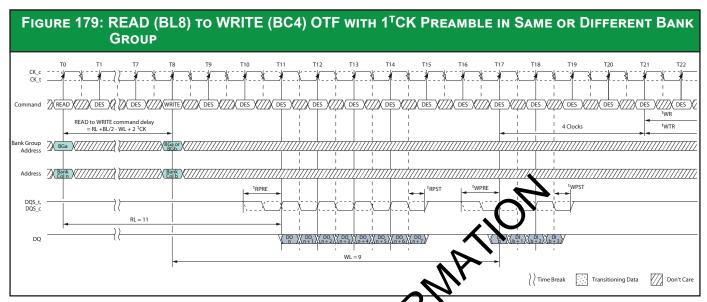
- Notes: 1. BC = 4, RL = 11 (CL = 11, AL = 0), READ preamble = $1^{t}CK$, WL = 9 (CWL = 9, AL = 0), WRITE preamble = $1^{t}CK$.
 - 2. DO n = data-out from column n; DI b = data-in from column b.

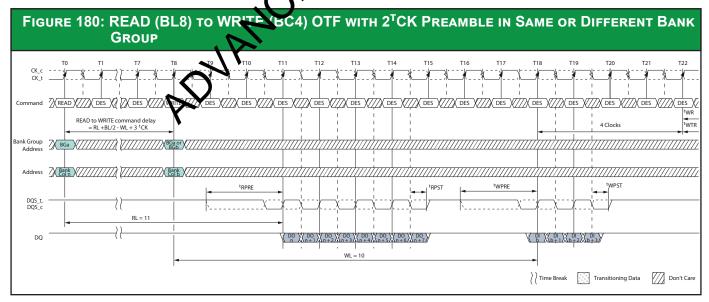


- 3. DES commands are shown for ease of illustration; other commands may be valid at these times.
- 4. BC4 (fixed) setting activated by MR0[1:0] = 01.
- 5. CA parity = Disable, CS to CA latency = Disable, Read DBI = Disable, Write DBI = Disable, Write CRC = Disable.



- BC = 4, RL = 11 (CL = 11, AL = 0), READ preamble = 2^tCK, WL = 9 (CWL = 9 + 1 [see Note 5], AL = 0), WRITE preamble = 2^tCK.
- 2. DO n = data-out from column n; DI b = data-in from column b.
- 3. DES commands reshown for ease of illustration; other commands may be valid at these times
- 4. BC4 (fixed) certing activated by MR0[1:0] = 10.
- 5. When operating in 2^tCK WRITE preamble mode, CWL may need to be programmed to a value at least 1 clock greater than the lowest CWL setting.
- 6. SA parity = Disable, CS to CA latency = Disable, Read DBI = Disable, Write DBI = Disable, Write CRC = Disable.

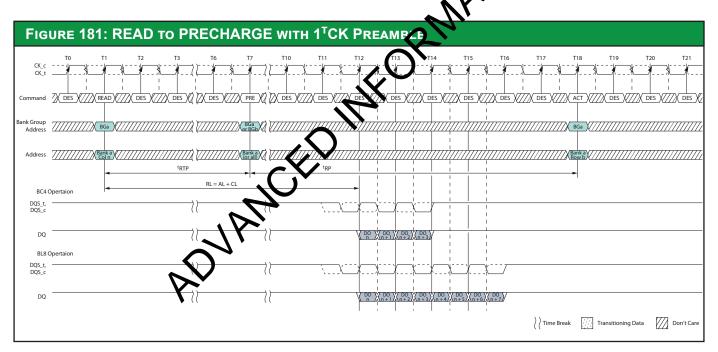

- BL = 8, RL = 11 (CL = 11, AL = 0), READ pread to the state of the stat
- 2. DO n = data-out from column n; DLD data-in from column b.
- 3. DES commands are shown for ease of illustration; other commands may be valid at these times.
- BC4 setting activated by Mix(1:0] = 01 and A12 = 0 during WRITE commands at T0. BL8 setting activated by Nix(1:0] = 01 and A12 = 1 during READ commands at T6.
- 5. CA parity = Disable, CS to A latency = Disable, Read DBI = Disable, Write DBI = Disable, Write CRC = Disable.


- Notes:
- 1. BL = 8, RL = 11 (CL = 11, AL = 0), READ preamble = 2tCK, WL = 10 (CWL = 9 + 1 [see Note 5], AL = 0), WRITE preamble = 2tCK.
- 2. DO n = data-out from column n; DI b = data-in from column b.
- 3. DES commands are shown for ease of illustration; other commands may be valid at these times.
- 4. BC4 setting activated by MR0[1:0] = 01 and A12 = 0 during WRITE commands at T0. BL8 setting activated by MR0[1:0] = 01 and A12 = 1 during READ commands at T6.

5. CA parity = Disable, CS to CA latency = Disable, Read DBI = Disable, Write DBI = Disable, Write CRC = Disable.

- 1. BL = 8, RL = 11 (CL = 11, AL = 0), READ oreamble = 1^{t} CK, WL = 9 (CWL = 9, AL = 0), WRITE preamble = 1^{t} CK.
- 2. DO $n = \text{data-out from column } n \to b = \text{data-in from column } b$.
- 3. DES commands are shown for case of illustration; other commands may be valid at these times.
- 4. BL8 setting activated by MR0[1:0] = 01 and A12 = 1 during READ commands at T0. BC4 setting activated by MR0[1:0] = 01 and A12 = 0 during WRITE commands at T8.
- 5. CA parity = Disable, to CA latency = Disable, Read DBI = Disable, Write DBI = Disable, Write CRC = Disable.

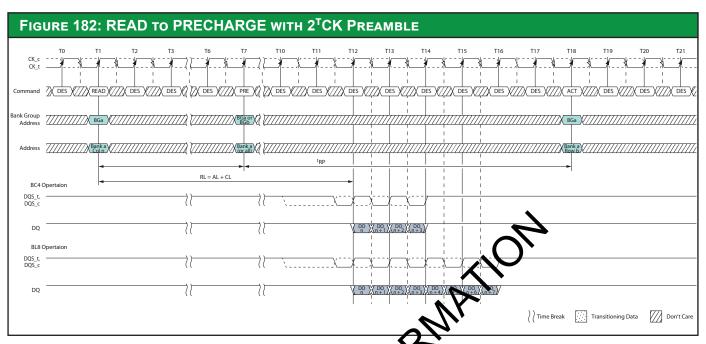
- Notes: 1. BL = 8, RL = 11 (CL = 11, AL = 0), READ preamble = 2^{t} CK, WL = 10 (CWL = 9 + 1 [see Note 5], AL = 0), WRITE preamble = 2^{t} CK.
 - 2. DO n = data-out from column n; DI b = data-in from column b.
 - 3. DES commands are shown for ease of illustration; other commands may be valid at these times.

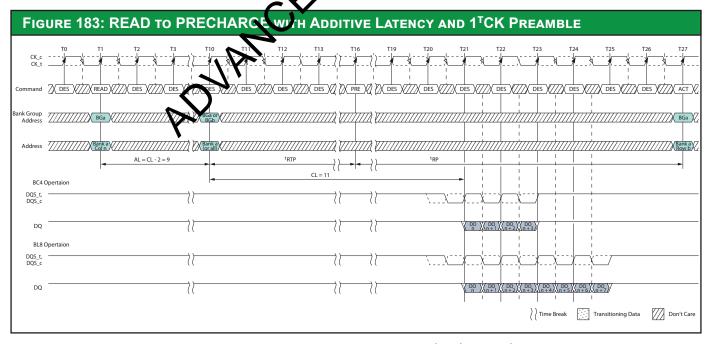


- 4. BL8 setting activated by MR0[1:0] = 01 and A12 = 1 during READ commands at T0. BC4 setting activated by MR0[1:0] = 01 and A12 = 0 during WRITE commands at T8.
- 5. CA parity = Disable, CS to CA latency = Disable, Read DBI = Disable, Write DBI = Disable, Write CRC = Disable.

READ Operation Followed by PRECHARGE Operation

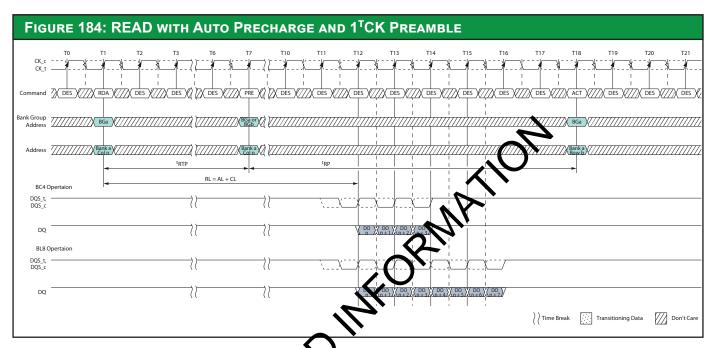
The minimum external READ command to PRECHARGE command spacing to the same bank is equal to AL + tRTP with ^tRTP being the internal READ command to PRECHARGE command delay. Note that the minimum ACT to PRE timing, ^tRAS, must be satisfied as well. The minimum value for the internal READ command to PRE-CHARGE command delay is given by ${}^{t}RTP$ (MIN) = MAX (4 × nCK, 7.5ns). A new bank ACTIVATE command may be issued to the same bank if the following two conditions are satisfied simultaneously:


- The minimum RAS precharge time (tRP [MIN]) has been satisfied from the clock at which the precharge begins.
- The minimum RAS cycle time (tRC [MIN]) from the previous bank activation has be-


- Notes: 1. RL = 11 (CL = 11, AL = 0), Preamble = $1^{t}CK$, ${}^{t}RTP = 6$, tRP = 11.
 - 2. 2. DO n = data-out from column n.
 - 3. 3. DES commands are shown for ease of illustration; other commands may be valid at these times.
 - 4. The example assumes that tRAS (MIN) is satisfied at the PRECHARGE command time (T7) and that ^tRC (MIN) is satisfied at the next ACTIVATE command time (T18).
 - 5. 5. CA parity = Disable, CS to CA latency = Disable, Read DBI = Disable.

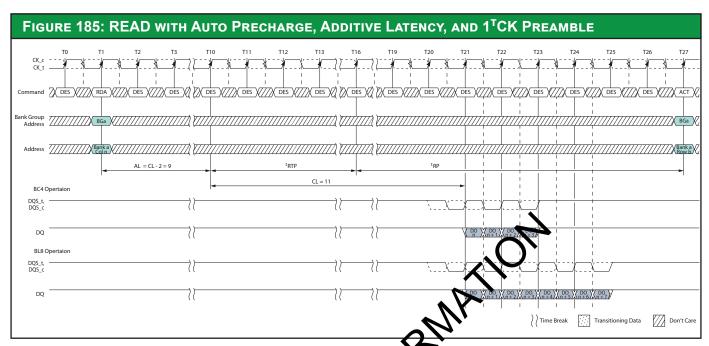
ST9D4512M40DBG0

- Notes: 1. RL = 11 (CL = 11, AL = 0), $Preamble X^{t}CK$, $^{t}RTP = 6$, tRP = 11.
 - 2. DO n = data-out from column n.
 - 3. DES commands are shown to case of illustration; other commands may be valid at these times.
 - 4. The example assumes that RAS (MIN) is satisfied at the PRECHARGE command time (T7) and that ^tRC (MIN) is satisfied at the next ACTIVATE command time (T18).
 - 5. CA parity = Disable, CS to CA latency = Disable, Read DBI = Disable.

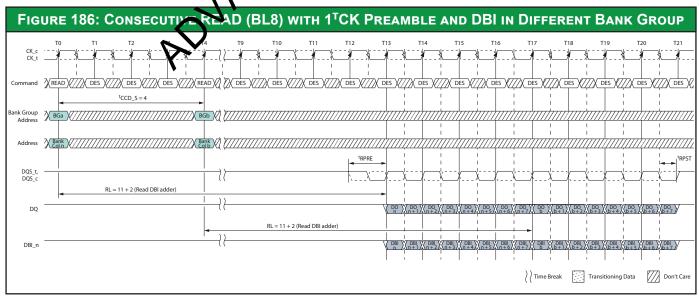


Notes: 1. RL = 20 (CL = 11, AL = CL - 2), $Preamble = 1^{t}CK$, $^{t}RTP = 6$, $^{t}RP = 11$.

2. DO n = data-out from column n.



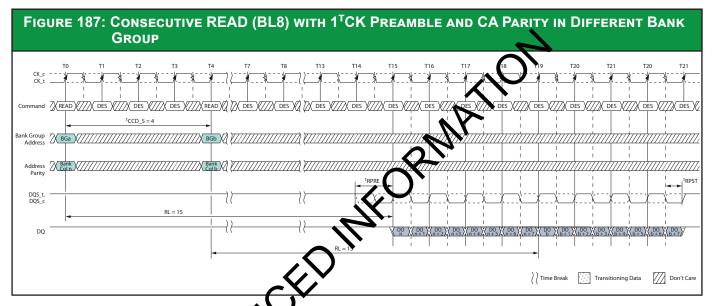
- 4. DES commands are shown for ease of illustration; other commands may be valid at these times.
- 5. 4. The example assumes that tRAS (MIN) is satisfied at the PRECHARGE command time (T16) and that tRC (MIN) is satisfied at the next ACTIVATE command time (T27).
- 5. 5. CA parity = Disable, CS to CA latency = Disable, Read DBI = Disable.


- 1. RL = 11 (CL = 11 (AL = 0), Preamble = $1^{t}CK$, ${}^{t}RTP = 6$, ${}^{t}RP = 11$.
- 2. DO n = data-out from column n.
- 3. DES commends are shown for ease of illustration; other commands may be valid at these times
- 4. ${}^{t}RTR = 6$ setting activated by MR0[A11:9 = 001].
- 5. The example assumes that ^tRC (MIN) is satisfied at the next ACTIVATE command time
- 6. A parity = Disable, CS to CA latency = Disable, Read DBI = Disable.

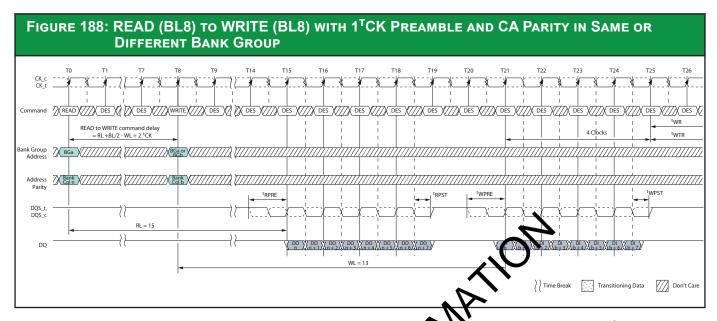
ST9D4512M40DBG0

- Notes: 1. RL = 20 (CL = 11, AL = CL 2), $Preamble = 1^{t}CK$, $^{t}RTP = 6$, tRP = 11.
 - 2. DO n = data-out from column n.
 - 3. DES commands are shown to case of illustration; other commands may be valid at these times.
 - 4. ${}^{t}RTP = 6$ setting activated by MR0[11:9] = 001.
 - 5. The example assumes that ^tRC (MIN) is satisfied at the next ACTIVATE command time (T27).
 - 6. CA parity = Disable, CS to CA latency = Disable, Read DBI = Disable.

READ Operation with Read Data Bus Inversion (DBI)

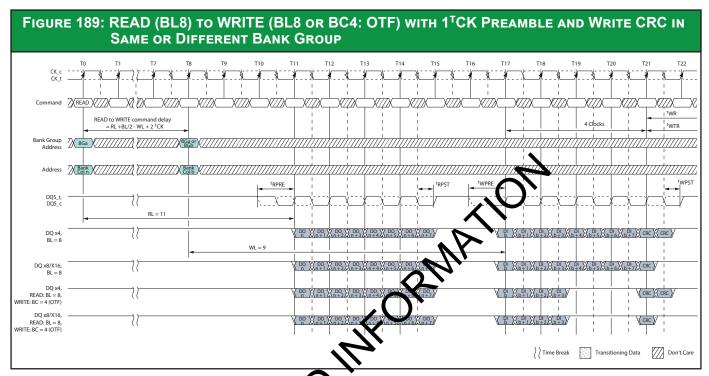


Notes: 1. BL = 8, AL = 0, CL = 11, Preamble = 1^tCK, RL = 11 + 2 (Read DBI adder).

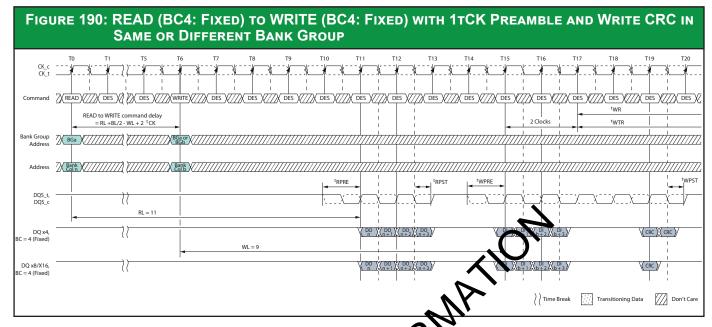

- 2. DO n (or b) = data-out from column n (or b); DBI n (or b) = data bus inversion from column n (or b).
- 3. DES commands are shown for ease of illustration; other commands may be valid at these times.
- 4. BL8 setting activated by either MR0[1:0] = 00 or MR0[1:0] = 01 and A12 = 1 during READ commands at T0 and T4.
- 5. CA parity = Disable, CS to CA latency = Disable, Read DBI = Enable.

READ Operation with Read Data Bus Inversion (DBI)

- Notes: 1. BL = 8, AL = 11, PL = 4, (RL = CL + AL + PL = 15), PL = 1
 - 2. DO n(0,b) = data-out from column n (or b).
 - 3. DES commands are shown for ease of illustration; other commands may be valid at these times.
 - L8 setting activated by either MR0[A1:A0 = 00] or MR0[A1:A0 = 01] and A12 = 1 during EAD commands at T0 and T4.
 - 5. CA parity = Enable, CS to CA latency = Disable, Read DBI = Disable.

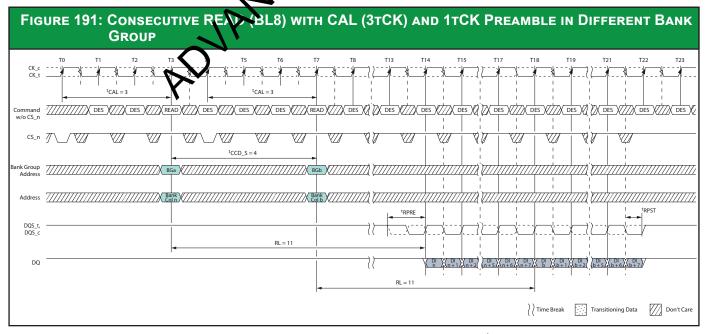


- 1. BL = 8, AL = 0, CL = 11, PL = 4, (RL = CL + $\frac{1}{2}$ PL = 15), READ preamble = 1^tCK, CWL = 9, AL = 0, PL = 4, (WL = CL + AL + PL = 18) WRITE preamble = 1^tCK.
- 2. DO n = data-out from column n, D = data-in from column b.
- 3. DES commands are shown for eace of illustration; other commands may be valid at these times.
- 4. BL8 setting activated by the MR0[1:0] = 00 or MR0[1:0] = 01 and A12 = 1 during READ commands at T0 and WNT command at T8.
- 5. CA parity = Enable CS to CA latency = Disable, Read DBI = Disable, Write CRC = Disable, Write CRC = Disable



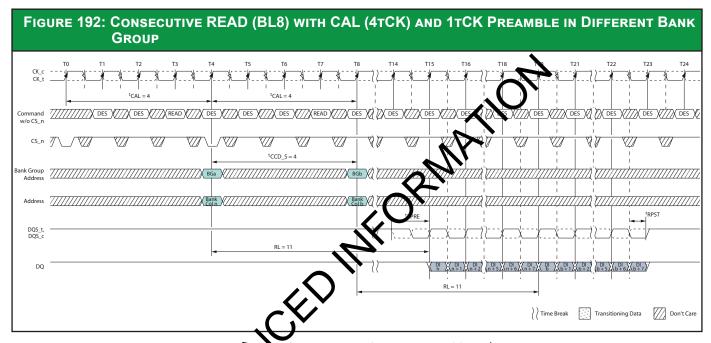
READ Followed by WRITE with CRC Enabled

- 1. BL = 8 (or BC = 4; CTF for Write), RL = 11 (CL = 11, AL = 0), READ preamble = 1^{t} CK, WL = 9 (CWL = 9, AL = 0), WRITE preamble = 1^{t} CK.
- 2. DO n = data-out from column n, DI b = data-in from column b.
- 3. DES commands are shown for ease of illustration; other commands may be valid at these times.
- 4. BL8 letting activated by either MR0[1:0] = 00 or MR0[1:0] = 01 and A12 = 1 during READ commands at T0 and WRITE commands at T8.
 - \blacksquare BC4 setting activated by MR0[1:0] = 01 and A12 = 0 during WRITE commands at T8.
 - 9. CA parity = Disable, CS to CA latency = Disable, Read DBI = Disable, Write DBI = Disable, Write CRC = Enable.



1. BC = 4 (Fixed), RL = 11 (CL = 11, AL Notes:

- preamble = $1^{t}CK$, WL = 9 (CWL = 9, AL = 0), WRITE preamble = 1^tCK.
- 2. DO n = data-out from column n, QI bdata-in from column b.
- ase of illustration; other commands may be valid at 3. DES commands are shown to these times.
- MR0[1:0] = 10.4. BC4 setting activated by
- 5. CA parity = Disable, to CA latency = Disable, Read DBI = Disable, Write DBI = Disable, Write CRC = Enabl


READ Operation with Command/Address Latency (CAL) Enabled

Notes: 1. BL = 8, RL = 11 (CL = 11, AL = 0), READ preamble = 1^{t} CK.

- 2. DI n (or b) = data-in from column n (or b).
- 3. DES commands are shown for ease of illustration; other commands may be valid at these times.
- 4. BL8 setting activated by either MR0[1:0] = 00 or MR0[1:0] = 01 and A12 = 1 during READ commands at T3 and T7.
- 5. CA parity = Enable, CS to CA latency = Enable, Read DBI = Disable, Write DBI = Disable, Write CRC = Disable.
- 6. Enabling CAL mode does not impact ODT control timings. The same timing relationship relative to the command/address bus as when CAL is disabled should be maintained.

- 1. BL = 8, (CL = 11, AL = 0), READ preamble = $1^{t}CK$.
- 2. Dl n (or b) = data-in from column n (or b).
- 3. DECommands are shown for ease of illustration; other commands may be valid at the etimes.

PL8 setting activated by either MR0[1:0] = 00 or MR0[1:0] = 01 and A12 = 1 during READ commands at T3 and T8.

- CA parity = Enable, CS to CA latency = Enable, Read DBI = Disable, Write DBI = Disable, Write CRC = Disable.
- 6. Enabling CAL mode does not impact ODT control timings. The same timing relationship relative to the command/address bus as when CAL is disabled should be maintained.

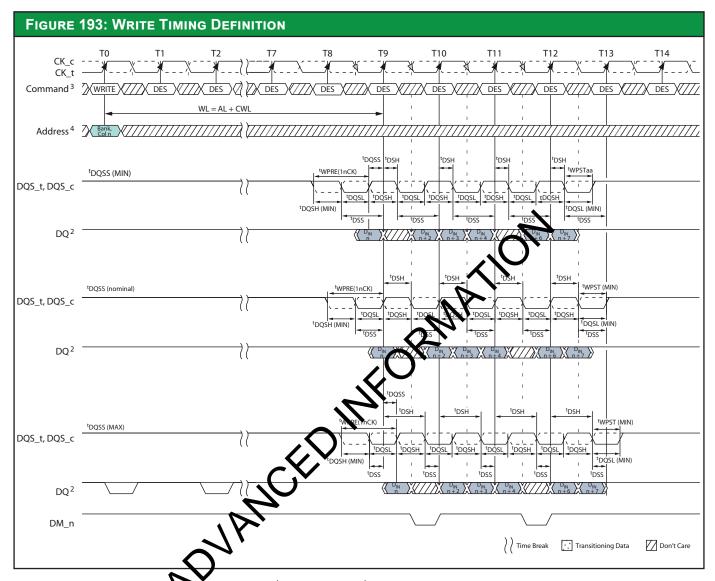
WRITE Operation

Write Timing Definitions

The write timings shown in the following figures are applicable in normal operation mode, that is, when the DLL is enabled and locked.

Write Timing - Clock-to-Data Strobe Relationship

The clock-to-data strobe relationship is shown below and is applicable in normal oper-ation mode, that is, when the DLL is enabled and locked.

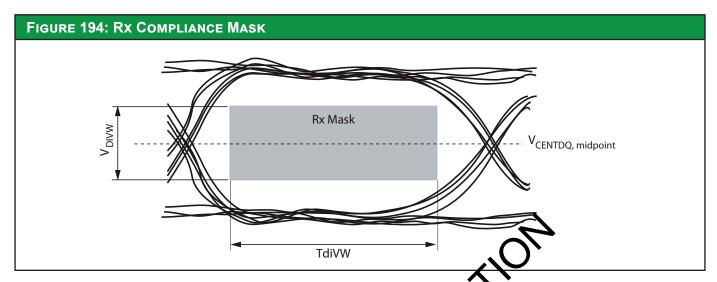

Rising data strobe edge parameters:

- ^tDQSS (MIN) to ^tDQSS (MAX) describes the allowed range for a rising data strobe edge relative to CK.
- ^tDQSS is the actual position of a rising strobe edge relative to CK.
- ^tDQSH describes the data strobe high pulse width.
- tWPST strobe going to HIGH, nondrive level (shown in the postamble section of graphic below).

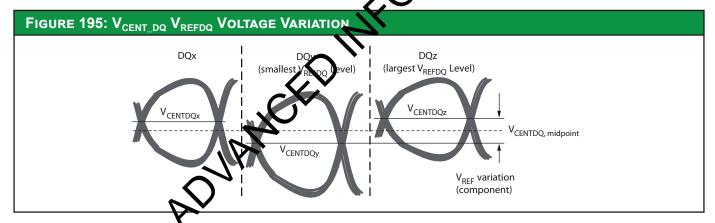
Falling data strobe edge parameters:

- ^tDQSL describes the data strobe low pulse width.
- ADVANCE DINAPOR • twpre strobe going to LOW, initial drive level (shown in the pream) ion of the graphic below).

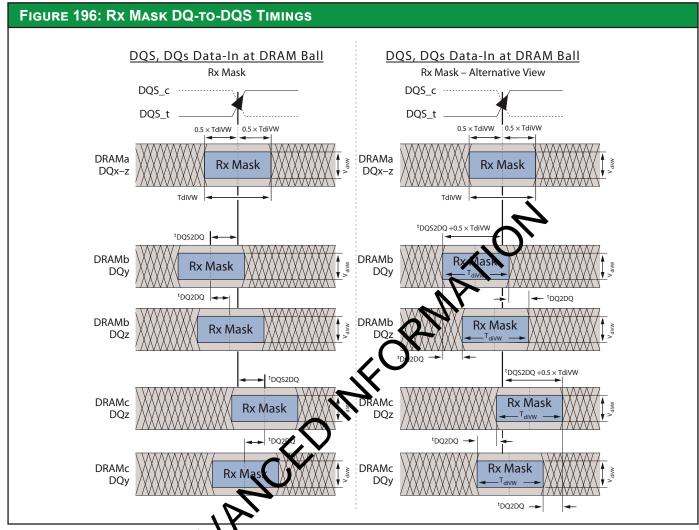
Notes. BL8, WL = 9 (AL = 0, CWL = 9).


- 2. $D_{IN}n = data-in from column n$.
- 3. DES commands are shown for ease of illustration; other commands may be valid at these times.
- 4. BL8 setting activated by either MR0[1:0] = 00 or MR0[1:0] = 01 and A12 = 1 during WRITE command at T0.
- 5. ^tDQSS must be met at each rising clock edge.

Write Timing – Data Strobe-to-Data Relationship


The DQ input receiver uses a compliance mask (Rx) for voltage and timing as shown in the figure below. The receiver mask (Rx mask) defines the area where the input signal must not encroach in order for the DRAM input receiver to be able to successfully capture a valid input signal. The Rx mask is not the valid data-eye. T_{diVW} and V_{diVW} define the absolute maximum Rx mask.

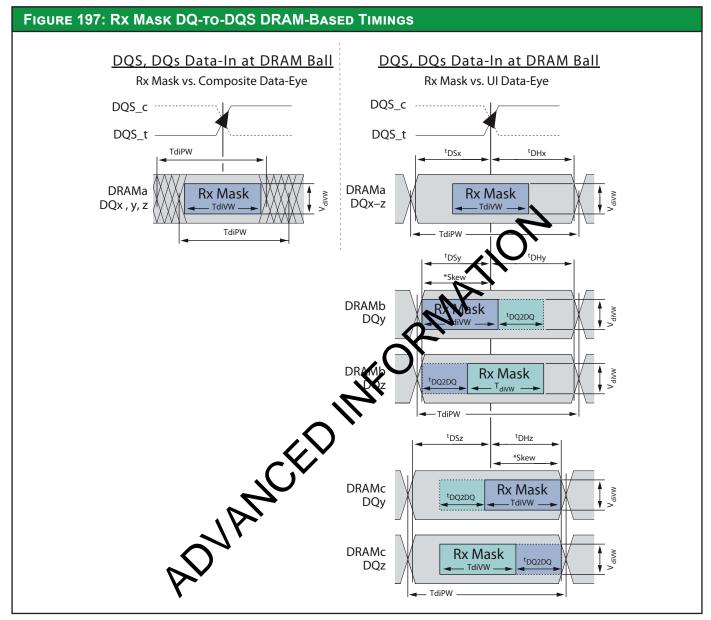
ST9D4512M40DBG0



 $V_{CENTDQ,midpoint}$ is defined as the midpoint between the largest V_{REFDQ} voltage level and the smallest V_{REFDQ} voltage level across all DQ pins for a given DRAM. Each DQ pin's V_{REFDQ} is defined by the center (widest opening) of the cumulative data input eye as depicted in the following figure. This means a DRAM's level variation is accounted for within the DRAM Rx mask. The DRAM V_{REFDQ} level will be set by the system to account for RON and ODT settings.

The following figure shows the Rx mask requirements both from a midpoint-to-midpoint reference (left side) and from an edge-to-edge reference. The intent is not to add any new requirement or specification between the two but rather how to convert the relationship between the two methodologies. The minimum data-eye shown in the composite view is not actually obtainable due to the minimum pulse width requirement.

Notes: 1 Des represents an optimally centered mask.

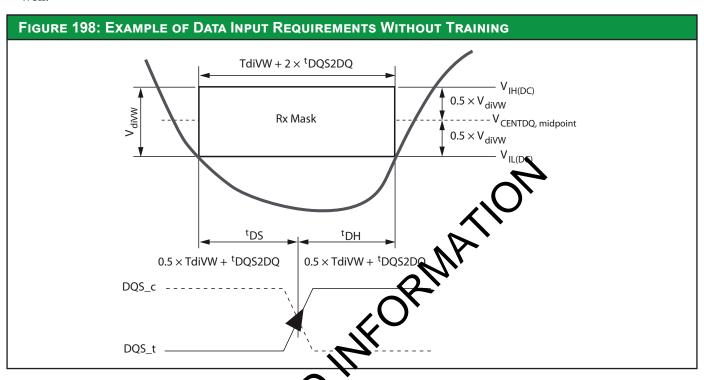

Qy represents earliest valid mask.

DQz represents latest valid mask.

- DRAMa represents a DRAM without any DQS/DQ skews. DRAMb represents a DRAM with early skews (negative ^tDQS2DQ). DRAMc represents a DRAM with delayed skews (positive ^tDQS2DQ).
- 3. This figure shows the skew allowed between DRAM-to-DRAM and between DQ-to-DQ for a DRAM. Signals assume data is center-aligned at DRAM latch. TdiPW is not shown; composite data-eyes shown would violate T_{diPW}. V_{CENTDQ,midpoint} is not shown but is assumed to be midpoint of V_{diVW}.

The previous figure shows the basic Rx mask requirements. Converting the Rx mask requirements to a classical DQ-to-DQS relationship is shown in the following figure. It should become apparent that DRAM write training is required to take full advantage of the Rx mask.

Notes: 1. DQx represents an optimally centered mask. DQy represents earliest valid mask.


DQz represents latest valid mask.

- *Skew = ^tDQS2DQ + 0.5 x TdiVW DRAMa represents a DRAM without any DQS/DQ skews. DRAMb represents a DRAM with the earliest skews (negative ^tDQS2DQ, ^tDQSy > *Skew). DRAMc represents a DRAM with the latest skews (positive ^tDQS2DQ, ^tDQHz > *Skew).
- ^tDS/tDH are traditional data-eye setup/hold edges at DC levels.
 ^tDS and tDH are not specified; ^tDH and ^tDS may be any value provided the pulse width and Rx mask limits are not violated.
 ^tDH (MIN) > TdiVW + ^tDS (MIN) + ^tDQ2DQ.

The DDR4 SDRAM's input receivers are expected to capture the input data with an Rx mask of TdiVW provided the minimum pulse width is satisfied. The DRAM controller will have to train the data input buffer to utilize the Rx mask specifications to this maximum benefit.

If the DRAM controller does not train the data input buffers, then the worst case limits have to be used for the Rx mask (TdiVW + $2 \times {}^tDQS2DQ$), which will generally be the classical minimum (tDS and tDH) and is required as well.

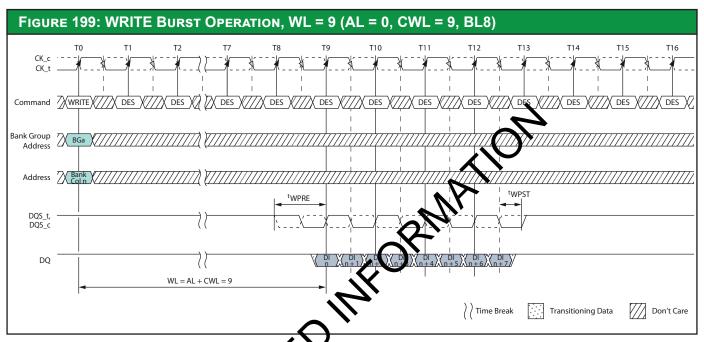
WRITE Burst Operation

The following write timing diagrams are intended to help understand each write parameter's meaning and are only examples. Each parameter will be defined in detail separately. In these write timing diagrams, CK and DQS are shown aligned, and DQS and DQ are shown center-aligned for the purpose of illustration.

DDR4 WRITE command supports butsts of BL8 (fixed), BC4 (fixed), and BL8/BC4 on-the-fly (OTF); OTF uses address A12 to control OTF where OFR is enabled:

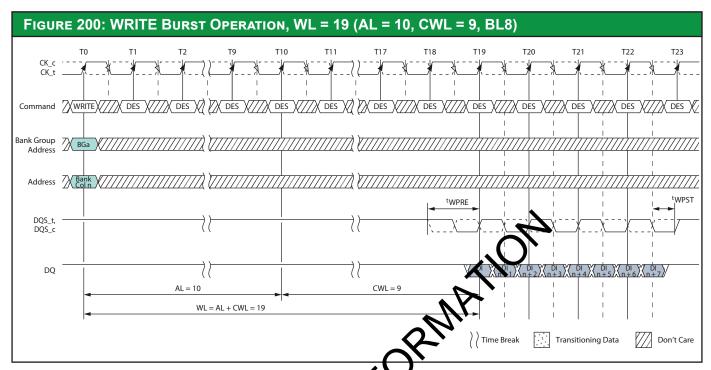
- A12 = 0, BC4 (BC4 = burst chop)
- A12 = 1, BL8

WRITE commands can issue precharge automatically with a WRITE with auto precharge (WRA) command, which is enabled by A10 HIGH.


- WRITE command with A10 = 0 (WR) performs standard write, bank remains active after WRITE burst
- WRITE command with A10 = 1 (WRA) performs write with auto precharge, bank goes into precharge after WRITE burst

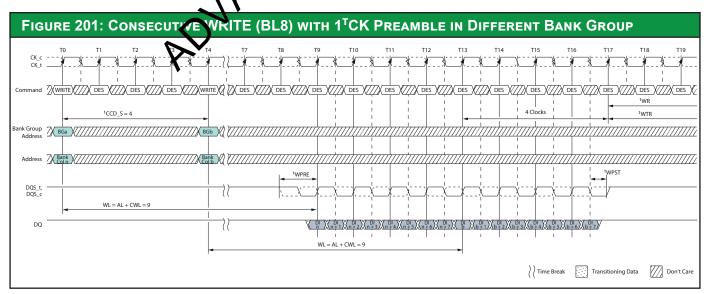
The DATA MASK (DM) function is supported for the x8 and x16 configurations only (the DM function is not supported on x4 devices). The DM function shares a common pin with the DBI_n and TDQS functions. The DM function only applies to WRITE operations and cannot be enabled at the same time the DBI function is enabled.

• If DM_n is sampled LOW on a given byte lane, the DRAM masks the write data received on the DQ inputs.


- If DM_n is sampled HIGH on a given byte lane, the DRAM does not mask the data and writes this data into the DRAM core.
- If CRC write is enabled, then DM enabled (via MRS) will be selected between write CRC nonpersistent mode (DM disabled) and write CRC persistent mode (DM enabled).

- 1. BL8, WL = 0, = 9, Preamble = 1^tCK.
- 2. DI n = Data
- DES com are shown for ease of illustration; other commands may be valid at
- activated by either MR0[1:0] = 00 or MR0[1:0] = 01 and A12 = 1 during command at T0.
 - arity = Disable, CS to CA atency = Disable, Read DBI = Disable.

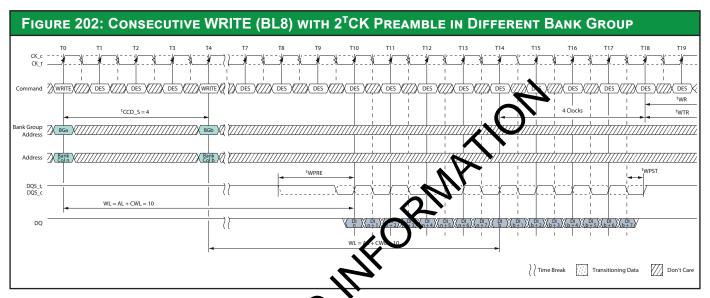
ST9D4512M40DBG0



Notes: 1. BL8, WL = 19, AL = 10 (CL - 1) CV 9, Preamble = 1^{t} CK.

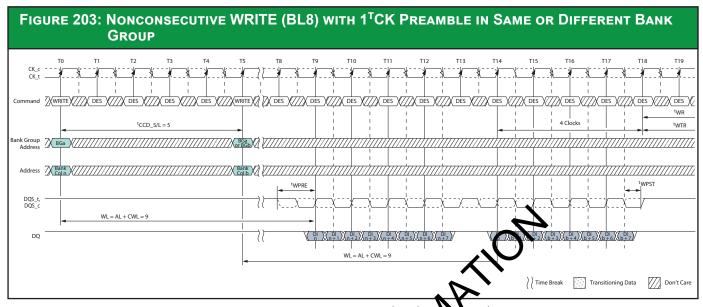
- 2. DI n = data-in from column
- 3. DES commands are shown for ease of illustration; other commands may be valid at these times.
- 4. BL8 setting activated by either MR0[1:0] = 00 or MR0[1:0] = 01 and A12 = 1 during WRITE command at V.
- 5. CA parity = Osable, CS to CA latency = Disable, Read DBI = Disable.

WRITE Operation Followed by Another WRITE Operation

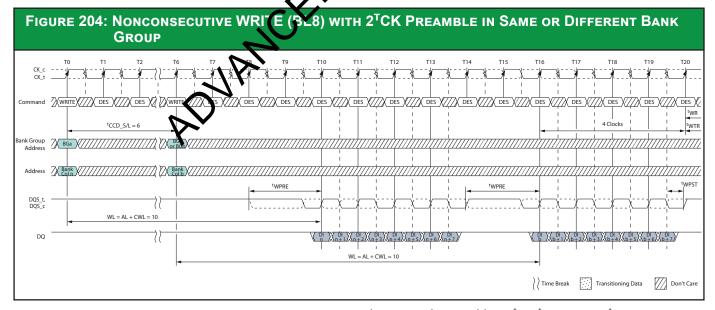


Notes: 1. BL8, AL = 0, CWL = 9, Preamble = 1^tCK.

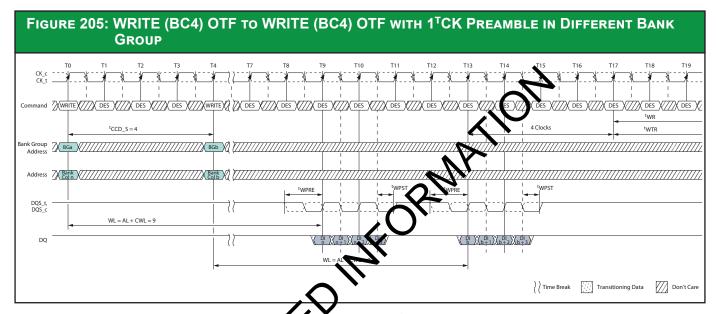
2. DI n (or b) = data-in from column n (or column b).



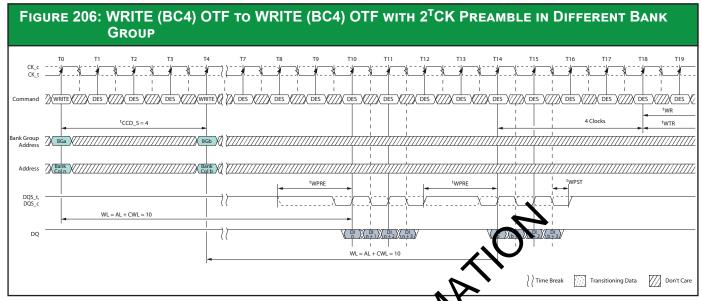
- 3. DES commands are shown for ease of illustration; other commands may be valid at these times.
- 4. BL8 setting activated by either MR0[1:0] = 00 or MR0[1:0] = 01 and A12 = 1 during WRITE commands at T0 and T4.
- 5. CA parity = Disable, CS to CA latency = Disable, Write DBI = Disable, Write CRC = Disable.
- 6. The write recovery time (tWR) and write timing parameter (tWTR) are referenced from the first rising clock edge after the last write data shown at T17.



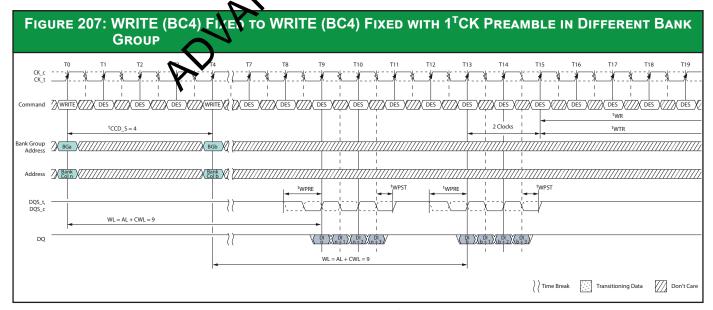
- 1. BL8, AL = 0, CWL = 9 + 1 = 10 (see Note 7), Preamble = 2^{t} CK.
- 2. DI n (or b) = data-in from column n (or column b).
- 3. DES commands treshown for ease of illustration; other commands may be valid at these times.
- 4. BL8 setting activated by either MR0[1:0] = 00 or MR0[1:0] = 01 and A12 = 1 during WRITE commands at T0 and T4.
- 5. CAparity = Disable, CS to CA latency = Disable, Write DBI = Disable, Write CRC = Disable.
- The write recovery time (tWR) and write timing parameter (tWTR) are referenced from the first rising clock edge after the last write data shown at T17.
 - When operating in 2^t CK WRITE preamble mode, CWL may need to be programmed to a value at least 1 clock greater than the lowest CWL setting supported in the applicable t CK range, which means CWL = 9 is not allowed when operating in 2^t CK WRITE preamble mode.


- 1. BL8, AL = 0, CWL = 9, Preamble = 1^{t} CK, tCCD $XL = 5^{t}$ CK
- 2. DI n (or b) = data-in from column n (or join m b).
- 3. DES commands are shown for ease of Illustration; other commands may be valid at these times.
- 4. BL8 setting activated by either MR0[1:0] = 00 or MR0[1:0] = 01 and A12 = 1 during WRITE commands at T0 and T3.
- 5. CA parity = Disable, CS to CA latency = Disable, Write DBI = Disable, Write CRC = Disable.
- 6. The write recovery time (tWR) and write timing parameter (tWTR) are referenced from the first rising clock edge after the last write data shown at T18.

- 1. BL8, AL = 0, CWL = 9 + 1 = 10 (see Note 8), Preamble = $2^{t}CK$, ${}^{t}CCD_{S}/L = 6^{t}CK$.
- 2. DI n (or b) = data-in from column n (or column b).
- 3. DES commands are shown for ease of illustration; other commands may be valid at these times.
- 4. BL8 setting activated by either MR0[1:0] = 00 or MR0[1:0] = 01 and A12 = 1 during WRITE commands at T0 and T6.



- 5. CA parity = Disable, CS to CA latency = Disable, Write DBI = Disable, Write CRC = Disable.
- 6. ^tCCD_S/L = 5 isn't allowed in 2^tCK preamble mode.
- 7. The write recovery time (tWR) and write timing parameter (tWTR) are referenced from the first rising clock edge after the last write data shown at T20.
- 8. When operating in 2^tCK WRITE preamble mode, CWL may need to be programmed to a value at least 1 clock greater than the lowest CWL setting supported in the applicable ^tCK range, which means CWL = 9 is not allowed when operating in 2^tCK WRITE preamble mode.

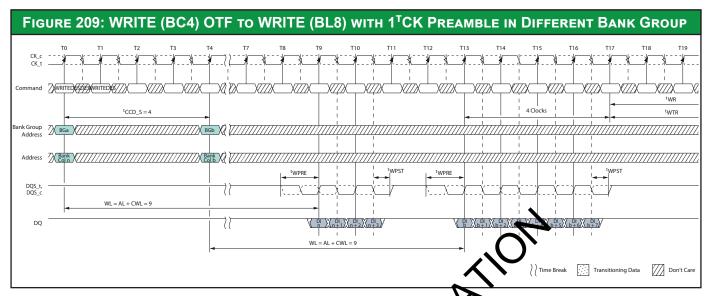


- 1. BC4, AL = 0, CWV = 9, Preamble = 1^{t} CK.
- 2. DI n (or b) $\frac{1}{2}$ data-in from column n (or column b).
- 3. DES comments are shown for ease of illustration; other commands may be valid at these times.
- 4. B04 3 tting activated by MR0[1:0] = 01 and A12 = 0 during WRITE commands at T0 and
- A parity = Disable, CS to CA latency = Disable, Write DBI = Disable, Write CRC = Disable.
 The write recovery time (^tWR) and write timing parameter (^tWTR) are referenced from the first rising clock edge after the last write data shown at T17.

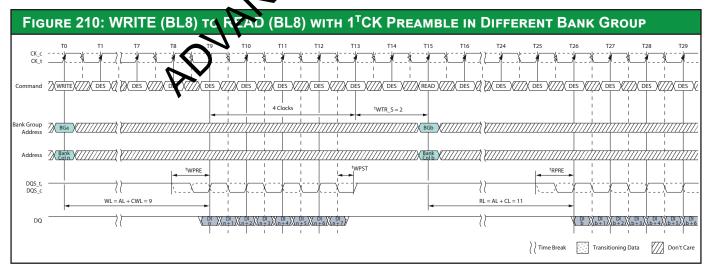
- 1. BC4, AL = 0, CWL = 9 + 1 = 10 (see Note 7). Preamble = 2^{t} CK.
- 2. DI n (or b) = data-in from column n (or to min b).
- 3. DES commands are shown for ease of llustration; other commands may be valid at these times.
- 4. BC4 setting activated by MR [10] = 01 and A12 = 1 during WRITE commands at T0 and T4.
- 5. CA parity = Disable, CS to CA latency = Disable, Write DBI = Disable, Write CRC = Disable.
- 6. The write recovery time (tWR) and write timing parameter (tWTR) are referenced from the first rising clock edge after the last write data shown at T18.
- 7. When operating in 2 CK WRITE preamble mode, CWL may need to be programmed to a value at least 1 clock greater than the lowest CWL setting supported in the applicable ^tCK range, which means CWL = 9 is not allowed when operating in 2^tCK WRITE preamble mode.

Notes: 1. BC4, AL = 0, CWL = 9, Preamble = $1^{t}CK$.

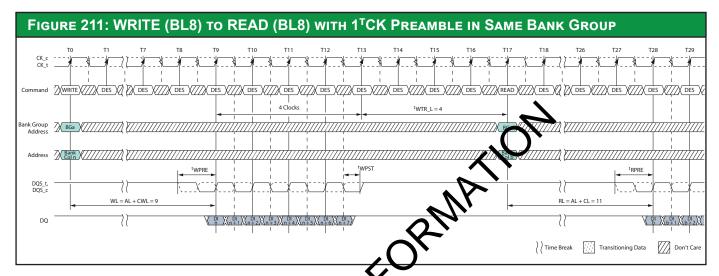
2. DI n (or b) = data-in from column n (or column b).



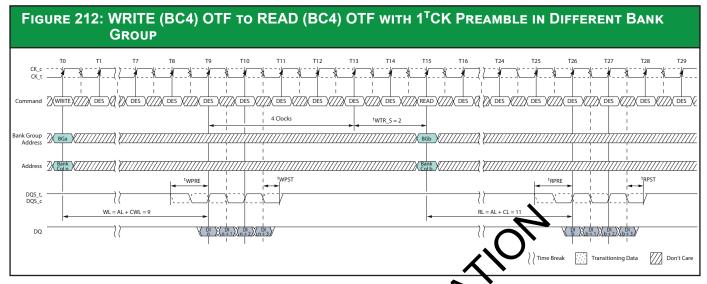
- 3. DES commands are shown for ease of illustration; other commands may be valid at these times.
- 4. BC4 (fixed) setting activated by MR0[1:0] = 10.
- 5. CA parity = Disable, CS to CA latency = Disable, Write DBI = Disable, Write CRC = Disable.
- 6. The write recovery time (tWR) and write timing parameter (tWTR) are referenced from the first rising clock edge after the last write data shown at T15.


- 1. BL = 8/BC = 4, AL = 0, CL = 1 Preamble = $1^{t}CK$.
- 2. DI n (or b) = data-ir from column n (or column b).
- 3. DES commands are shown for ease of illustration; other commands may be valid at these times.
- 4. BL8 setting activated by MR0[1:0] = 01 and A12 = 1 during WRITE command at T0.
 - BC4 set in spectivated by MR0[1:0] = 01 and A12 = 0 during WRITE command at T4.
- 5. CA positive Disable, CS to CA latency = Disable, Read DBI = Disable, Write CRC = Disable.
- 6. The write recovery time (tWR) and write timing parameter (tWTR) are referenced from the first rising clock edge after the last write data shown at T17.

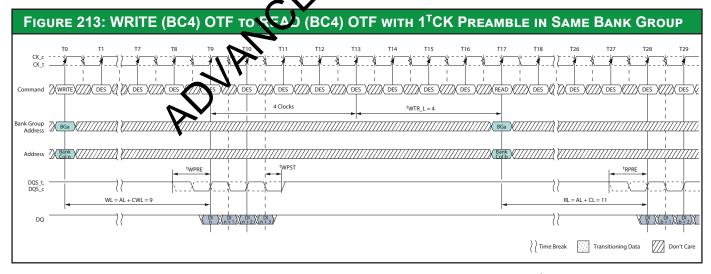
- Notes: 1. BL = 8/BC = 4, AL = 0, CL = 9, Preamble =
 - 2. DI n (or b) = data-in from column n (or
 - 3. DES commands are shown for ease a justiation; other commands may be valid at these times.
 - 4. BC4 setting activated by MR0[4: 1 and A12 = 0 during WRITE command at T0.
 - [0] = 01 and A12 = 1 during WRITE command at T4. BL8 setting activated by MRQ
 - 5. CA parity = Disable, CS to atency = Disable, Read DBI = Disable, Write CRC = Disable.
 - 6. The write recovery time (WR) and write timing parameter (tWTR) are referenced from ge after the last write data shown at T17. the first rising clock ed


WRITE Operation Followed by READ Operation

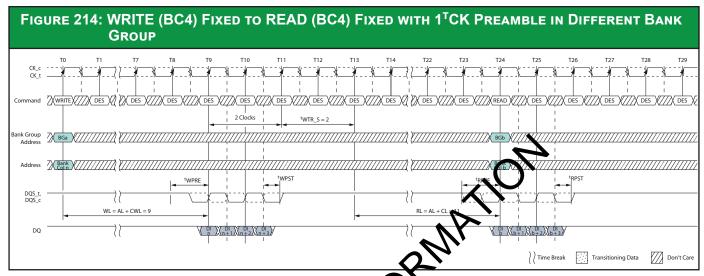
- 1. BL = 8, WL = 9 (CWL = 9, AL = 0), CL = 11, READ preamble = 1^{t} CK, WRITE preamble = Notes: 1^tCK.
 - 2. DI b = data-in from column b.
 - 3. DES commands are shown for ease of illustration; other commands may be valid at these times.

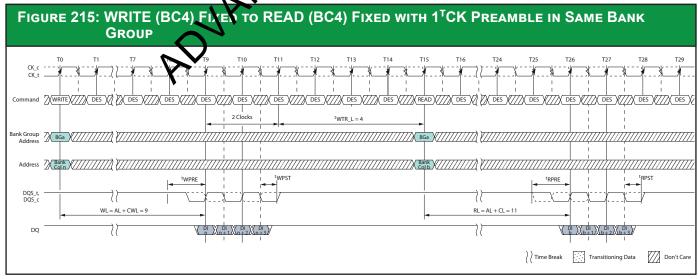


- 4. BL8 setting activated by either MR0[1:0] = 00 or MR0[1:0] = 01 and A12 = 1 during WRITE command at T0 and READ command at T15.
- 5. CA parity = Disable, CS to CA latency = Disable, Read DBI = Disable, Write DBI = Disable, Write CRC = Disable.
- 6. The write timing parameter (tWTR_S) is referenced from the first rising clock edge after the last write data shown at T13.



- BL = 8, WL = 9 (CWL = 9, AL CL = 11, READ preamble = 1^tCK, WRITE preamble = 1^tCK.
- 2. DI $b = \text{data-in from column} \lambda$
- 3. DES commands are shown for ease of illustration; other commands may be valid at these times.
- 4. BL8 setting activated by either MR0[1:0] = 00 or MR0[1:0] = 01 and A12 = 1 during WRITE command at T0 and READ command at T17.
- CA par Disable, CS to CA latency = Disable, Read DBI = Disable, Write DBI = Disable, Write CR = Disable.
- 6. The write timing parameter (tWTR_L) is referenced from the first rising clock edge after the ast write data shown at T13.

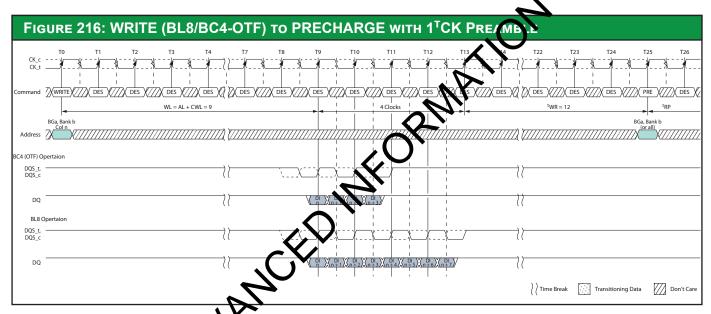

- BC = 4, WL = 9 (CWL = 9, AL = 0), CL = 11, READ camble = 1^tCK, WRITE preamble = 1^tCK.
- 2. DI b = data-in from column b.
- 3. DES commands are shown for ease of inestration; other commands may be valid at these times.
- 4. BC4 setting activated by MR0(1:0) 01 and A12 = 0 during WRITE command at T0 and READ command at T15.
- 5. CA parity = Disable, CS to A latency = Disable, Read DBI = Disable, Write DBI = Disable, Write CRC = Disable.
- 6. The write timing parameter (tWTR_S) is referenced from the first rising clock edge after the last write data shown at T13.


- Notes: 1. BC = 4, WL = 9 (CWL = 9, AL = 0), CL = 11, READ preamble = $1^{\dagger}CK$, WRITE preamble = $1^{\dagger}CK$.
 - 2. DI b = data-in from column b.
 - 3. DES commands are shown for ease of illustration; other commands may be valid at these times.
 - 4. BC4 setting activated by MR0[1:0] = 01 and A12 = 0 during WRITE command at T0 and READ command at T17.

- 5. CA parity = Disable, CS to CA latency = Disable, Read DBI = Disable, Write DBI = Disable, Write CRC = Disable.
- 6. The write timing parameter (tWTR_L) is referenced from the first rising clock edge after the last write data shown at T13.

- 1. BC = 4, WL = 9 (CWL = 9, AL = 0), CL 1, READ preamble = 1 tCK, WRITE preamble = 1 tCK.
- 2. DI b = data-in from column
- 3. DES commands are shown of ease of illustration; other commands may be valid at these times.
- 4. BC4 setting activated by MR0[1:0] = 10.
- 5. CA parity = Disable, to CA latency = Disable, Read DBI = Disable, Write DBI = Disable, Write CRC = Disable.
- 6. The write timing parameter (tWTR_S) is referenced from the first rising clock edge after the last time data shown at T11.

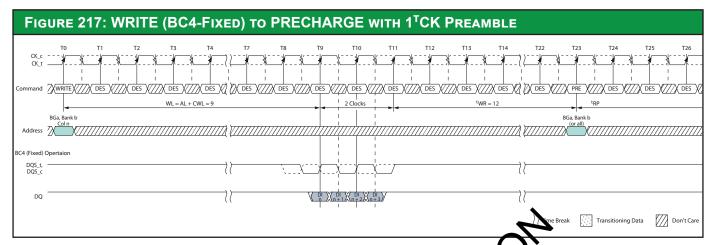
Notes: 1. BC = 4, WL = 9 (CWL = 9, AL = 0), CL = 11, READ preamble = $1^{t}CK$, WRITE preamble = $1^{t}CK$


2. DI b = data-in from column b.

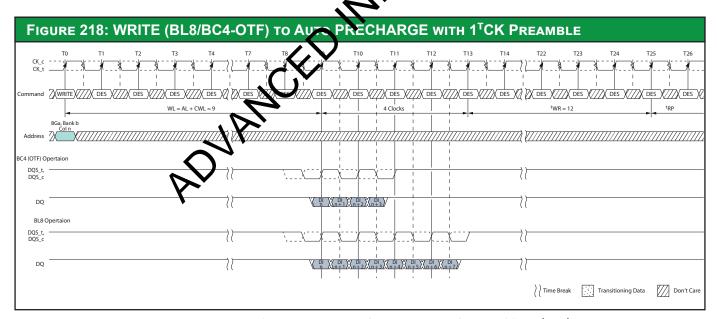
- 3. DES commands are shown for ease of illustration; other commands may be valid at these times.
- 4. BC4 setting activated by MR0[1:0] = 10.
- 5. CA parity = Disable, CS to CA latency = Disable, Read DBI = Disable, Write DBI = Disable, Write CRC = Disable.
- 6. The write timing parameter (^tWTR_L) is referenced from the first rising clock edge after the last write data shown at T11.

WRITE Operation Followed by PRECHARGE Operation

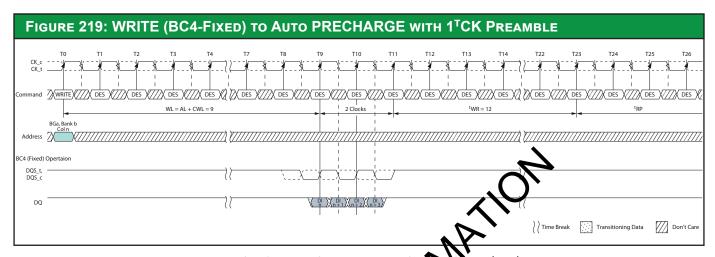
The minimum external WRITE command to PRECHARGE command spacing is equal to WL (AL + CWL) plus either 4^{t} CK (BL8/BC4-OTF) or 2^{t} CK (BC4-fixed) plus t WR. The minimum ACT to PRE timing, t RAS, must be satisfied as well.



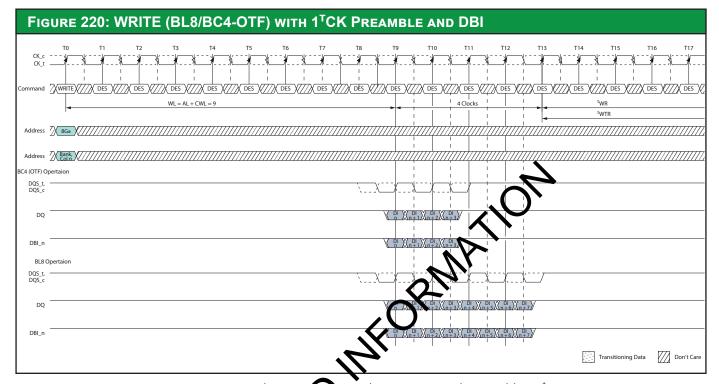
Notes: 1. BL = 8with BC4-OTF, WL = 9 (CWL = 9, AL = 0), Preamble = 1^{t} CK, tWR = 12.


ES commands are shown for ease of illustration; other commands may be valid at these times.

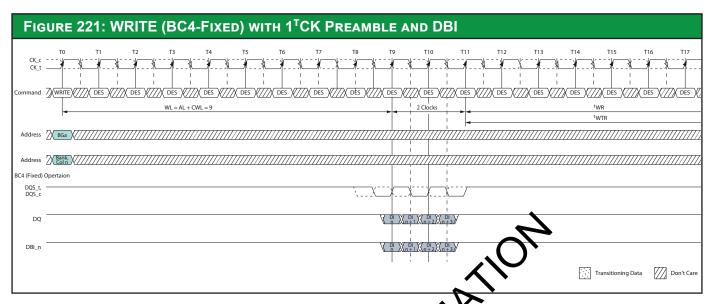
- 4. BC4 setting activated by MR0[1:0] = 01 and A12 = 0 during WRITE command at T0. BL8 setting activated by MR0[1:0] = 00 or MR0[1:0] = 01 and A12 = 1 during WRITE command at T0.
- 5. CA parity = Disable, CS to CA latency = Disable, Read DBI = Disable, CRC = Disable.
- 6. The write recovery time (tWR) is referenced from the first rising clock edge after the last write data shown at T13. tWR specifies the last burst WRITE cycle until the PRECHARGE command can be issued to the same bank.


- 1. BC4 = fixed, WL = 9 (CWL = 9, AL = 0), Preamble
- 2. DI n = data-in from column n.
- 3. DES commands are shown for ease of illustra ther commands may be valid at these times.
- 4. BC4 setting activated by MR0[1:0] = 10.€
- 5. CA parity = Disable, CS to CA latency isable, Read DBI = Disable, CRC = Disable.
- 6. The write recovery time (tWR) is referred. nced from the first rising clock edge after the last write data shown at T11. ^tWR specifies the last burst WRITE cycle until the PRECHARGE command can be issued to the same bank.

- Notes: 1. BL = 8 with BC4-OTF, WL = 9 (CWL = 9, AL = 0), Preamble = 1^tCK, ^tWR = 12.
 - 2. DI n = data-in from column n.
 - 3. DES commands are shown for ease of illustration; other commands may be valid at
 - 4. BC4 setting activated by MR0[1:0] = 01 and A12 = 0 during WRITE command at T0. BL8 setting activated by MR0[1:0] = 00 or MR0[1:0] = 01 and A12 = 1 during WRITE command at T0.
 - 5. CA parity = Disable, CS to CA latency = Disable, Read DBI = Disable, CRC = Disable.

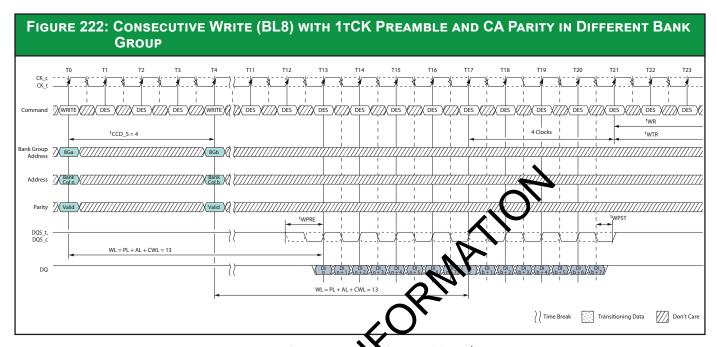

6. The write recovery time (tWR) is referenced from the first rising clock edge after the last write data shown at T13. tWR specifies the last burst WRITE cycle until the PRECHARGE command can be issued to the same bank.

- 1. BC4 = fixed, WL = 9 (CWL = 9, AL = 0). Probable = 1^{t} CK, t^{t} WR = 12
- 2. DI n = data-in from column n.
- 3. DES commands are shown for ease of Nustration; other commands may be valid at these times.
- 4. BC4 setting activated by MR0(:0] = 10.
- 5. CA parity = Disable, CS to CA latency = Disable, Read DBI = Disable, CRC = Disable.
- 6. The write recovery time (NWR) is referenced from the first rising clock edge after the last write data shown at 11. tWR specifies the last burst WRITE cycle until the PRECHARGE command can be issued to the same bank.



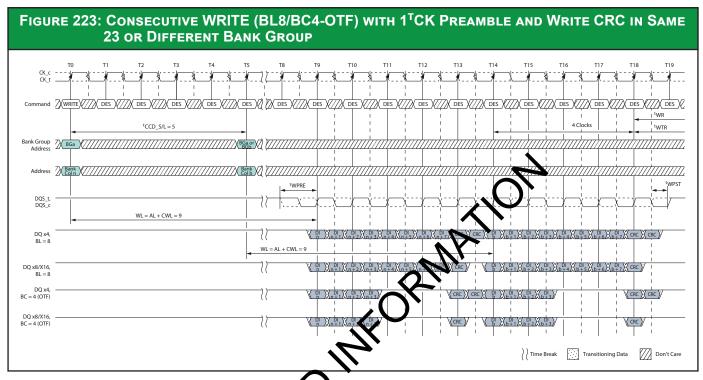
WRITE Operation with WRITE DBI Enabled

- 1. BL = 8 with BC4-OCF, = 9 (CWL = 9, AL = 0), Preamble = 1^tCK.
- 2. DI $n = \text{data-in } f \cdot \text{om}$
- DES comma re shown for ease of illustration; other commands may be valid at these tim
- activated by MR0[1:0] = 01 and A12 = 0 during WRITE command at T0. g activated by MR0[1:0] = 00 or MR0[1:0] = 01 and A12 = 1 during WRITE com-
- arity = Disable, CS to CA latency = Disable, Write DBI = Enabled, Write CRC = Disa-
- he write recovery time (tWR_DBI) is referenced from the first rising clock edge after the last write data shown at T13.

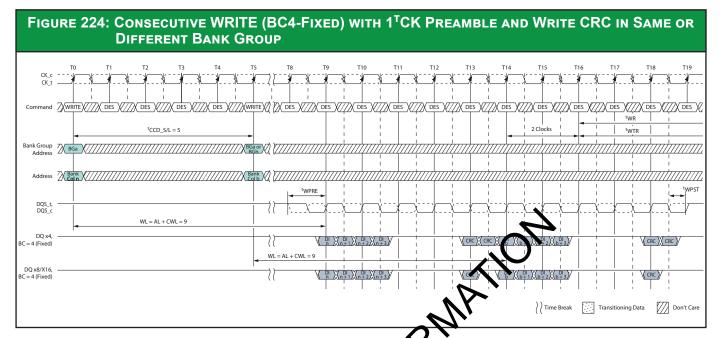


- Notes: 1. BC4 = fixed, WL = 9 (CWL = 9, AL = 0), Preak
 - 2. DI n = data-in from column n.
 - 3. DES commands are shown for ease of tration; other commands may be valid at these times.
 - 4. BC4 setting activated by MR011:
 - 5. CA parity = Disable, CS to Chartency = Disable, Write DBI = Enabled, Write CRC = Disa-ADVANCED bled.

ST9D4512M40DBG0

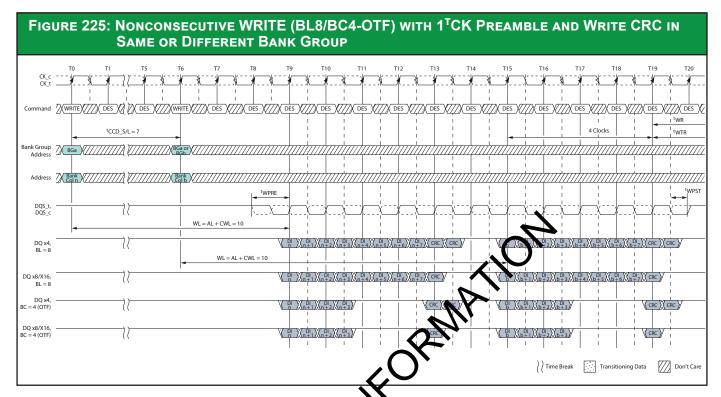

WRITE Operation with CA Parity Enabled

- BL = 8, WL = 9 (CWL = 13_AL = 6), Preamble = 1^tCK.
- 2. DI n = data-in from column n
- 3. DES commands are allown for ease of illustration; other commands may be valid at these times.
- 4. BL8 setting activated by MR0[1:0] = 00 or MR0[1:0] = 01 and A12 = 1 during WRITE commands at To and V4.
- 5. CA parity Leable, CS to CA latency = Disable, Write DBI = Enabled, Write CRC = Disable.
- 6. 6. The write recovery time (tWR) and write timing parameter (tWTR) are referenced from the first rising clock edge after the last write data shown at T21.

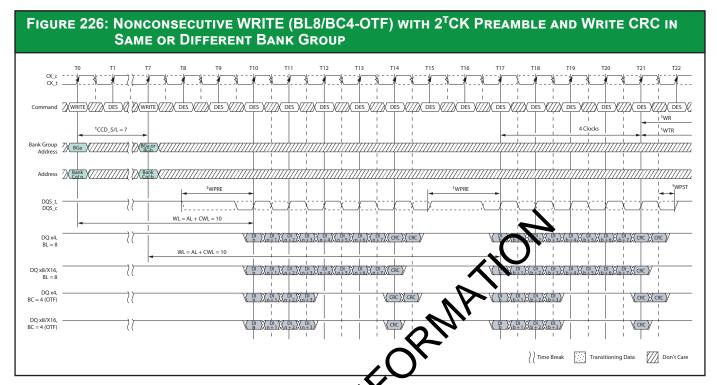

WRITE Operation with Write CRC Enabled

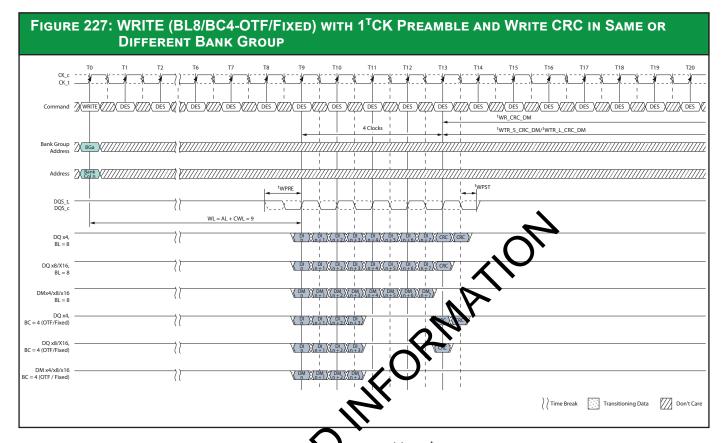
 BL8/BC4-OTF, A≱ WL = 9, Preamble = $1^{t}CK$, $^{t}CDD_S/L = 5^{t}CK$. Notes:

- 2. DIn (or b) = rom column *n* (or column *b*).
- DES commends are shown for ease of illustration; other commands may be valid at
- ctivated by either MR0[1:0] = 00 or MR0[1:0] = 01 and A12 = 1 during nmands at T0 and T5.
- tting activated by MR0[1:0] = 01 and A12 = 0 during WRITE commands at T0 and
- parity = Disable, CS to CA latency = Disable, Read DBI = Disable, Write CRC = Enable. The write recovery time (tWR) and write timing parameter (tWTR) are referenced from the first rising clock edge after the last write data shown at T18.



- Notes: 1. BC4-fixed, AL = 0, CWL = 9, Preamble
 - 2. DI n (or b) = data-in from column column b).
 - 3. DES commands are shown for each of illustration; other commands may be valid at these times.
 - 4. BC4 setting activated by [R0[1:0] = 10 during WRITE commands at T0 and T5.
 - 5. CA parity = Disable A latency = Disable, Read DBI = Disable, Write CRC = Enable, DM = Disable.
 - 6. The write recovery time (tWR) and write timing parameter (twite the first rising clock edge after the last write data shown at T16. ie (tWR) and write timing parameter (tWTR) are referenced from


ADVAT


- 1. BL8/BC4-OTF, AL = 0, CW Preamble = 1^{t} CK, t CDD_S/L = 6^{t} CK.
- 2. DI n (or b) = data-in from column n (or column b).
- 3. DES commands are shown for ease of illustration; other commands may be valid at these times.
- 4. BL8 setting activated by either MR0[1:0] = 00 or MR0[1:0] = 01 and A12 = 1 during WRITE commands at T0 and T6.
- 5. BC4 setting activated by MR0[1:0] = 01 and A12 = 0 during WRITE commands at T0 and T6.
- 6. CA parity = Disable, CS to CA latency = Disable, Read DBI = Disable, Write CRC = Enable, Disable.
- he write recovery time (tWR) and write timing parameter (tWTR) are referenced from the first rising clock edge after the last write data shown at T19.

- BL8/BC4-OTF, AL = 0, CWL = 9 1 = 10 (see Note 9), Preamble = 2^tCK, ^tCDD_5/L = 7^tCK (see Note 7).
- 2. DI n (or b) = data-in from folumn n (or column b).
- 3. DES commands an shown for ease of illustration; other commands may be valid at these times.
- 4. BL8 setting activated by either MR0[1:0] = 00 or MR0[1:0] = 01 and A12 = 1 during WRITE commands at T0 and T7.
- 5. BC4 setting ctivated by MR0[1:0] = 01 and A12 = 0 during WRITE commands at T0 and T7.
- 6. CAparity = Disable, CS to CA latency = Disable, Read DBI = Disable, Write CRC = Enable, Db = Disable.
 - t DD_S/L = 6^{t} CK is not allowed in 2^{t} CK preamble mode.
- The write recovery time (tWR) and write timing parameter (tWTR) are referenced from the first rising clock edge after the last write data shown at T21.
- 9. When operating in 2^t CK WRITE preamble mode, CWL may need to be programmed to a value at least 1 clock greater than the lowest CWL setting supported in the applicable t CK range. That means CWL = 9 is not allowed when operating in 2^t CK WRITE preamble mode.

- 1. BL8/BC4, AL = 0 CWL = 9, Preamble = 1^{t} CK.
- 2. DI n (or b) = data in from column n (or column b).
- 3. DES commends are shown for ease of illustration; other commands may be valid at these times.
- 4. BL8 setting activated by either MR0[1:0] = 00 or MR0[1:0] = 01 and A12 = 1 during WRI is command at T0.
- 5. *RC4 setting activated by either MR0[1:0] = 10 or MR0[1:0] = 01 and A12 = 0 during VRITE command at T0.
- A parity = Disable, CS to CA latency = Disable, Read DBI = Disable, Write CRC = Enable, DM = Enable.
- 7. The write recovery time (tWR_CRC_DM) and write timing parameter (tWTR_S_CRC_DM/tWTR_L_CRC_DM) are referenced from the first rising clock edge after the last write data shown at T13.

ST9D4512M40DBG0

Write Timing Violations

Motivation

Generally, if timing parameters are violated, a complete reset/initialization procedure has to be initiated to make sure that the device works properly. However, for certain minor violations, it is desirable that the device is guaranteed not to "hang up" and that errors are limited to that specific operation. A minor violation does not include a major timing violation (for example, when a DQS strobe misses in the ^tDQSCK window).

For the following, it will be assumed that there are no timing violations with regard to the WRITE command itself (including ODT, and so on) and that it does satisfy all timing requirements not mentioned below.

Data Setup and Hold Violations

If the data-to-strobe timing requirements (^tDS, ^tDH) are violated, for any of the strobe calges associated with a WRITE burst, then wrong data might be written to the memory location addressed with this WRITE command.

In the example, the relevant strobe edges for WRITE Burst A are associated with the clock edges: T5, T5.5, T6, T6.5, T7, T7.5, T8, and T8.5.

Subsequent reads from that location might result in unpredictable read with; however, the device will work properly otherwise.

Strobe-to-Strobe and Strobe-to-Clock Violations

If the strobe timing requirements (^tDQSH, tDQSL, ^tWPSE WPST) or the strobe to clock timing requirements (^tDSS, ^tDSH, ^tDQSS) are violated, for any of the strobe toges associated with a WRITE burst, then wrong data might be written to the memory location addressed with the offending WRITE command. Subsequent reads from that location might result in unpredictable read data; however, the device will work properly otherwise with the following constraints:

- Both write CRC and data burst OTF are disabled; timing specifications other than ^tDQSH, ^tDQSL, ^tWPRE, ^tWPST, ^tDSS, ^tDSH, ^tDQSS are not violated.
- The offending write strobe (and pleasable) arrive no earlier or later than six DQS transition edges from the WRITE latency position.
- A READ command following an offending WRITE command from any open bank is allowed.
- One or more subsequent WR or a subsequent WRA (to same bank as offending WR) may be issued ^tCCD_L later, but incorrect data could be written. Subsequent WR and WRA can be either offending or non-offending writes. Reads from these writes may provide incorrect data.
- One or more subsequent WR or a subsequent WRA (to a different bank group) may be issued ^tCCD_S later, but incorrect data could be written. Subsequent WR and WRA can be either offending or non-offending writes. Reads from these writes may provide incorrect data.
- After one or more precharge commands (PRE or PREA) are issued to the device after an offending WRITE command and all banks are in precharged state (idle state), a subsequent, non-offending WR or WRA to any open bank will be able to write correct data.

ZQ CALIBRATION Commands

A ZQ CALIBRATION command is used to calibrate DRAM RON and ODT values. The device needs a longer time to calibrate the output driver and on-die termination circuits at initialization and a relatively smaller time to perform periodic calibrations.

The ZQCL command is used to perform the initial calibration during the power-up initialization sequence. This command may be issued at any time by the controller depending on the system environment. The ZOCL command triggers the calibration engine inside the DRAM and, after calibration is achieved, the calibrated values are transferred from the calibration engine to DRAM I/O, which is reflected as an updated output driver and ODT values.

The first ZQCL command issued after reset is allowed a timing period of ^tZQinit to perform the full calibration and the transfer of values. All other ZOCL commands except the first ZOCL command issued after reset are allowed a timing period of ^tZQoper.

The ZQCS command is used to perform periodic calibrations to account for voltage and temperature variations. A shorter timing window is provided to perform the calibration and transfer of values at defined by timing parameter ^tZQCS. One ZQCS command can effectively correct a minimum of 0.5 % (ZQ correction) of RON and R_{TT} impedance error within 64~nCK for all speed bins assuming the maximum sensitivities specified in the Output Driver and ODT Voltage and Temperature Sensitivity tables. The appropriate interval between ZQCS commands can be method for calculating the interval determined from these tables and other appli-cation-specific parameters between ZQCS commands, given the temperature (T_{driftrate}) and vol driftrate) drift rates that the device is d by the following formula: subjected to in the application, is illustrated. The interval could be

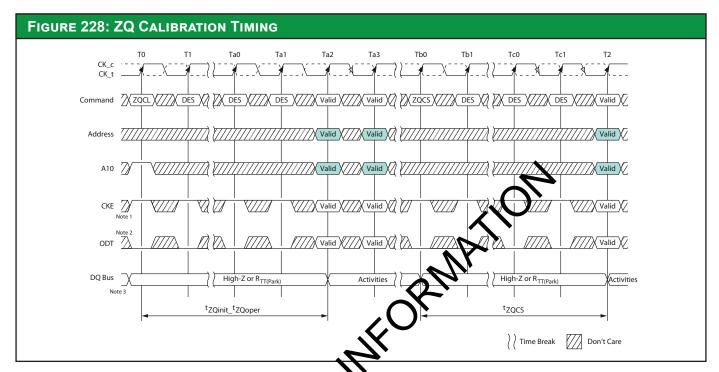
$$\frac{ZQ_{correction}}{R(T_{sens} \times T_{driftrate}) + V_{sens} \times V_{driftrate})}$$

Where $T_{sens} = MAX(dR_{TT}dT, dR_{ON}dTM)$ and MAX(dR_{TT}dV, dR_{ON}dVM) define the temperature and voltage sensitivities.

For example, if $T_{sens} = 1.5\%$ /°C, $V_{sens} = 1.5\%$ $\sqrt{6}$ /mV, $T_{driftrate} = 1$ °C/sec and $V_{driftrate} = 15$ mV /sec, then the interval between ZOCS commands is calc

$$0.5 = 0.133 \approx 128 \text{ms}$$

$$(1.5 \times 1) + (0.15 \times 15)$$


No other activities should be performed on the DRAM channel by the controller for the duration of ^tZOinit, ^tZOoper, or tZQCS. The quiet time on the DRAM channel allows accurate calibration of output driver and on-die termination values. After DRAM calibration is achieved, the device should disable the ZQ current consumption path to reduce power.

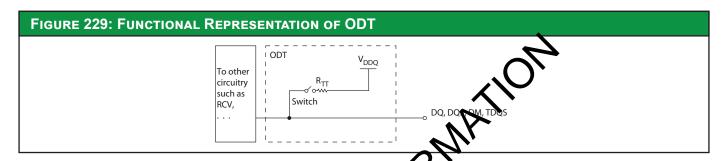
All banks must be precharged and ^tRP met before ZQCL or ZQCS commands are issued by the controller.

ZQ CALIBRATION commands can also be issued in parallel to DLL lock time when coming out of self refresh. Upon self refresh exit, the device will not perform an I/O calibration without an explicit ZQ CALIBRATION command. The earliest possible time for a ZQ CALIBRATION command (short or long) after self refresh exit is ^tXSF.

In systems that share the ZQ resistor between devices, the controller must not allow any overlap of 'ZQoper, 'Z-Qinit, or ^tZQCS between the devices.

ST9D4512M40DBG0

- Notes: 1. CKE must be continu ously registered HIGH during the calibration procedure.
 - 2. On-die termination must be disabled via the ODT signal or MRS during the calibration procedure or the DRAM will automatically disable R_{TT}1.


 3. All devices connected to the DQ bus should be High-Z during the calibration procedure.

ST9D4512M40DBG0

On-Die Termination

On-die termination (ODT) is a feature that enables the device to change termination resistance for each DQ, DQS, and DM_n signal when enabled via A11 = 1 in MR1) via the ODT control pin, WRITE command, or default parking value with MR setting. ODT is applied to each DQU, DQL, DQSU, DQSL, DMU_n, and DML_n signal. The ODT feature is designed to improve the signal integrity of the memory channel by allowing the DRAM controller to independently change termination resistance for any or all DRAM devices. More details about ODT control modes and ODT timing modes can be found further along in this document.

The ODT feature is turned off and not supported in self refresh mode.

The switch is enabled by the internal ODT control logic, which us such external ODT pin and other control information. The value of R_{TT} is determined by the settings of mode register bits (see Mode Register). The ODT pin will be ignored if the mode register MR1 is programmed to Vsable $R_{TT(NOM)}$ [MR1[9,6,2] = 0,0,0] and in self refresh mode.

ODT Mode Register and ODT State Table

The ODT mode of the DDR4 device has four states: data termination disable, $R_{TT(NOM)}$, $R_{TT(WR)}$, and $R_{TT(Park)}$. The ODT mode is enabled if any of MR1[10:8] ($R_{TT(NOM)}$), MR2[11:9] ($R_{TT(WR)}$), or MR5[8:6] ($R_{TT(Park)}$) are non-zero. When enabled, the value of R_{TT} is determined by the settings of these bits.

R_{TT} control of each R_{TT} condition is solved with a WR or RD command and ODT pin.

- R_{TT(WR)}: The DRAM (rank) that being written to provide termination regardless of ODT pin status (either HIGH or LOW).
- R_{TT(NOM)}: DRAM turns **Q** R_{TT(NOM)} if it sees ODT asserted HIGH (except when ODT is disabled by MR1).
- R_{TT(Park)}: Default parked value set via MR5 to be enabled and R_{TT(NOM)} is not turned on.
- The Termination State Table that follows shows various interactions.

The RTT values have the following priority:

- Data termination disable
- R_{TT(WR)}
- R_{TT(NOM)}
- R_{TT(Park)}

ODT Mode Register and ODT State Table

TABL	е 131: Текмі	NATION STATE	TABLE				
Case	R _{TT(Park)}	R _{TT(NOM)} 1	R _{TT(WR)} 2	ODT Pin	ODT READS ³	ODT Standby	ODT WRITES
A ⁴	Disabled	Disabled	Disabled	Don't Care	Off (High-Z)	Off (High-Z)	Off (High-Z)
			Enabled	Don't Care	Off (High-Z)	Off (High-Z)	R _{TT(WR)}
B ⁵	Enabled	Disabled	Disabled	Don't Care	Off (High-Z)	R _{TT(Park)}	R _{TT(Park)}
			Enabled	Don't Care	Off (High-Z)	R _{TT(Park)}	R _{TT(WR)}
C ₆	Disabled	Enabled	Disabled	Low	Off (High-Z)	Off (High-Z)	Off (High-Z)
				High	Off (High-Z)	R _{TT(NOM)}	R _{TT(NOM)}
			Enabled	Low	Off (High-Z)	Off (High-Z)	R _{TT(WR)}
				High	Off (High-Z)	R _{TT(NOM)}	R _{TT(WR)}
D ⁶	Enabled	Enabled	Disabled	Low	Off (High-Z)	TT(Park)	R _{TT(Park)}
				High	Off (High-Z	R _{TT(NOM)}	R _{TT(NOM)}
			Enabled	Low	Off (High-A)	R _{TT(Park)}	R _{TT(WR)}
				High	Off (High ℤ)	R _{TT(NOM)}	R _{TT(WR)}

- Notes: 1. If R_{TT(NOM)} MR is disabled, power to the QL eiver will be turned off to save power.
 - 2. If R_{TT(WR)} is enabled, R_{TT(WR)} will be a by a WRITE command for a defined period time independent of the ODT pin and \mathbf{R} setting of RTT(Park)/ $R_{TT(NOM)}$. This is described in the Dynamic ODT section.
 - 3. When a READ command is executed, the DRAM termination state viii according defined period independent of the ODT pin and MR setting of R_{TT(Park)}/R_{TT(NOM)}. This is
 - 4. Case A is generally best for single-rank memories.
 - 5. Case B is generally bes for dual-rank, single-slotted memories.
 - generally best for multi-slotted memories.

ODT Read Disable State Table

Upon receiving a READ command the DRAM driving data disables ODT after RL - (2 or 3) clock cycles, where 2 = preamble mode. ODT stays off for a duration of BL/2 + (2 or 3) + (0 or 1) clock $1^{t}CK$ preamble mode and $3 = 2^{t}CK$ cycles, where $2 = 1^{t}CK$ pream node, $3 = 2^{t}CK$ preamble mode, 0 = CRC disabled, and 1 = CRC enabled.

TABLE 132: READ TERM	INATION DISABLE WINDOW		
Preamble	CRC	Start ODT Disable After Read	Duration of ODT Disable
1 ^t CK	Disabled	RL - 2	BL/2 + 2
	Enabled	RL - 2	BL/2 + 3
2 ^t CK	Disabled	RL - 3	BL/2 + 3
	Enabled	RL - 3	BL/2 + 4

Synchronous ODT Mode

Synchronous ODT mode is selected whenever the DLL is turned on and locked. Based on the power-down definition, these modes include the following:

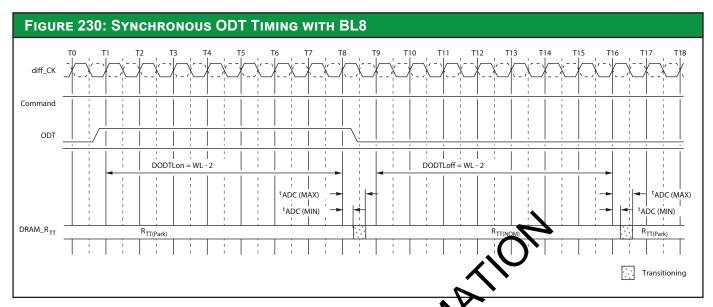
- Any bank active with CKE HIGH
- Refresh with CKE HIGH
- Idle mode with CKE HIGH
- Active power-down mode (regardless of MR1 bit A10)
- Precharge power-down mode

In synchronous ODT mode, R_{TT(NOM)} will be turned on DODTLon clock cycles after ODT is sampled HIGH by a rising clock edge and turned off DODTLoff clock cycles after ODT is registered LOW by a rising clock edge. The ODT latency is determined by the programmed values for: CAS WRITE latency (CWL), additive latency (AL), and parity latency (PL), as well as the programmed state of the preamble.

ODT Latency and Posted ODT

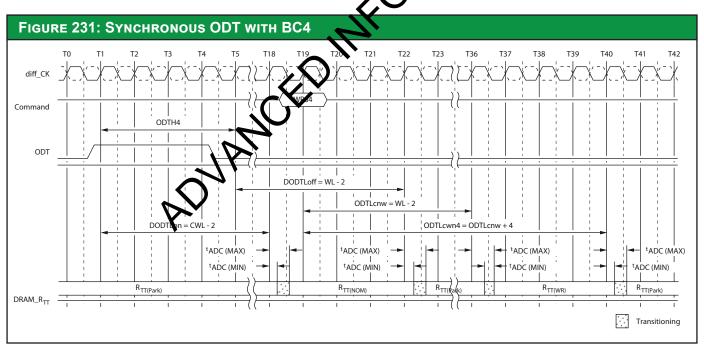
The ODT latencies for synchronous ODT mode are summarized in the table be low. For details, refer to the latency definitions.

TABLE 133	: ODT LATENCY AT DDR4-1600/-186	66/-2133/-2440/-2566/-32	200	
Note 1 applie	es to the entire table	.0>		
Symbol	Parameter	1 ^t CK Preamble	2 ^t CK Preamble	Unit
DODTLon	Direct ODT turn-on latency	WL + AL + PL - 2	CWL + AL + PL - 3	^t CK
DODTLoff	Direct ODT turn-off latency	CWL + AL + PL - 2	CWL + AL + PL - 3	
RODTLoff	READ command to internal ODT turn-of latency	CL + AL + PL - 2	CL + AL + PL - 3	
RODTLon4	READ command to R _{TT(Park)} turk-on la tency in BC4-fix <u>ed</u>	RODTLoff + 4	RODTLoff + 5	
RODTLon8	READ command to R _{TT} (1) Nrn-on latency in BL8/8C COTF	RODTLoff + 6	RODTLoff + 7	
ODTH4	ODT Assertion time. BC4 mode	4	5	
ODTH8	ODT Assertion time, BL8 mode	6	7	


Timing Parameters

In synchronous ODT mode, the following parameters apply:

- DODTLon, DODTLoff, RODTLoff, RODTLon4, RODTLon8, and tADC (MIN)/(MAX).
- tADC (MIN) and tADC (MAX) are minimum and maximum RTT change timing skew between different termination values. These timing parameters apply to both the synchronous ODT mode and the data termination disable mode.

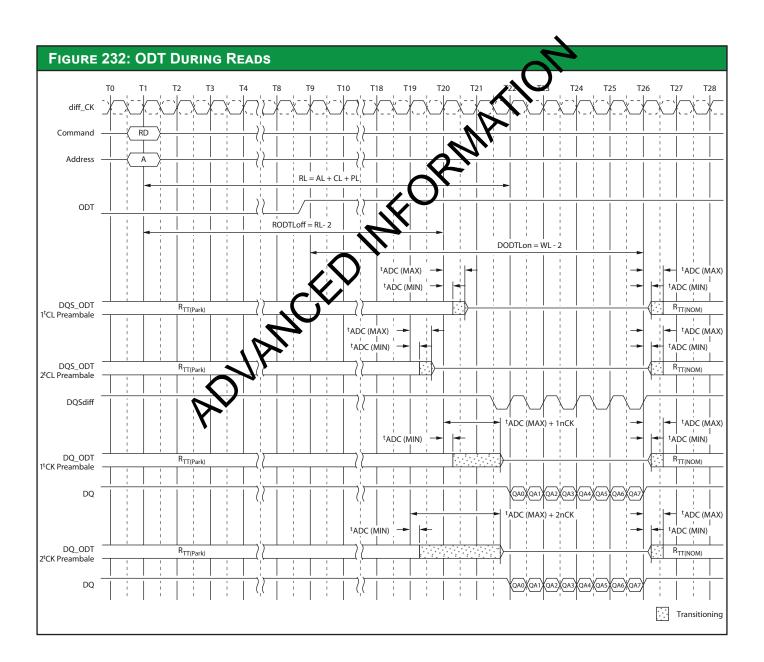

When ODT is asserted, it must remain HIGH until minimum ODTH4 (BC = 4) or ODTH8 (BL = 8) is satisfied. If write CRC mode or 2tCK preamble mode is enabled, ODTH should be adjusted to account for it. ODTHx is measured from ODT first registered HIGH to ODT first registered LOW or from the registration of a WRITE command.

ST9D4512M40DBG0

Notes: 1. Example for CWL = 9, AL = 0, PL = 0; DODTLOR * AL + PL + CWL - 2 = 7; DODTLOFF = AL + PL + CWL - 2 = 7.

2. ODT must be held HIGH for at least 20 TH8 after assertion (T1).

Notes: 1. Example for CWL = 9, AL = 10, PL = 0; DODTLon/off = AL + PL+ CWL - 2 = 17; ODTcnw = AL + PL+ CWL - 2 = 17.


2. ODT must be held HIGH for at least ODTH4 after assertion (T1).

ODT During Reads

Because the DRAM cannot terminate with R_{TT} and drive with R_{ON} at the same time, R_{TT} may nominally not be enabled until the end of the postamble as shown in the example below. At cycle T25 the device turns on the termination when it stops driving, which is determined by tHZ . If the DRAM stops driving early (that is, tHZ is early), then tADC (MIN) timing may apply. If the DRAM stops driving late (that is, tHZ is late), then the DRAM complies with tADC (MAX) timing.

Using CL = 11 as an example for the figure below: PL = 0, AL = CL - 1 = 10, RL = PL + AL + CL = 21, CWL = 9; RODTLoff = RL - 2 = 19, DODTLon = PL + AL + CWL - 2 = 17, RCM = 10, RCM

Dynamic ODT

In certain application cases and to further enhance signal integrity on the data bus, it is desirable that the termination strength of the device can be changed without issuing an MRS command. This requirement is supported by the dynamic ODT feature.

Functional Description

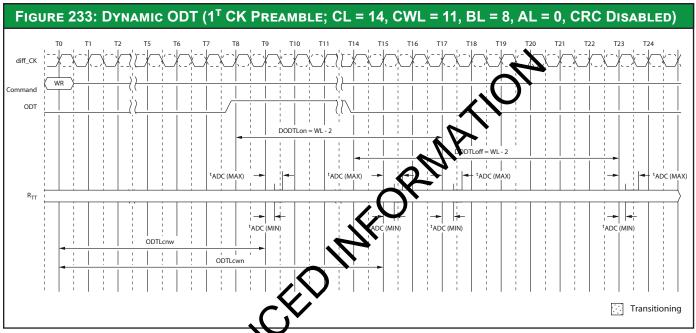
Dynamic ODT mode is enabled if bit A9 or A10 of MR2 is set to 1.

- Three R_{TT} values are available: $R_{TT(NOM)}$, $R_{TT(WR)}$, and $R_{TT(Park)}$.
 - The value for R_{TT(NOM)} is preselected via bits MR1[10:8].
 - The value for $R_{TT(WR)}$ is preselected via bits MR2[11:9].
 - The value for R_{TT(Park)} is preselected via bits MR5[8:6].
- During operation without WRITE commands, the termination is controlled as fol-lows:
 - Nominal termination strength R_{TT(NOM)} or R_{TT(Park)} is selected.
 - R_{TT(NOM)} on/off timing is controlled via ODT pin and latencies DODTLon and SETLoff, and R_{TT(Park)} is on when ODT is LOW.
- When a WRITE command (WR, WRA, WRS4, WRS8, WRAS4, and WRAS8) is registered, and if dynamic ODT is enabled, the termination is controlled as follows:
 - Latency ODTLcnw after the WRITE command, termination strength $\mathbf{x}_{\mathrm{CWR}}$ is selected.
 - Latency ODTLcwn8 (for BL8, fixed by MRS or selected OTF) or ODYL wn4 (for BC4, fixed by MRS or selected OTF) after the WRITE command, termination strength R_{TT(WP)} A 34-selected.

One or two clocks will be added into or subtracted from ODTLcvvi, and ODTLcvvi, depending on write CRC mode and/or 2^tCK preamble enablemen.

The following table shows latencies and timing parameters elevant to the on-die termination control in dynamic ODT mode. The dynamic ODT feature is not supported in

DLL-off mode. An MRS command must be used to set $N_{T(WR)}$ to disable dynamic ODT externally (MR2[11:9] = 000).


TABLE 134: DYNAMIC ODT	LATITICIES	s and Timing (1 ^T Cl	K PREAMBLE MODE	AND CRC DISABLE	D)
Name and Description	Abbr.	Defined from	Defined to	Definition for All DDR4 Speed Bins	Unit
ODT latency for change from $R_{TT(Park)}/R_{TT(NOM)}$ to $R_{TT(WR)}$	ODTLcnw	Registering external WRITE command	$\begin{array}{c} \text{Change R}_{\text{TT}} \text{ strength} \\ \text{from R}_{\text{TT}(\text{Park})} / \text{RTT}(\text{NOM}) \\ \text{to R}_{\text{TT}(\text{WR})} \end{array}$	ODTLcnw = WL - 2	^t CK
ODT latency for change from $R_{TT(WR)}$ to $R_{TT(Park)}/R_{TT(NOM)}$ (BC = 4)	ODTLcwn 4	Registering external WRITE command	Change R_{TT} strength from $R_{TT(WR)}$ to $R_{TT(Park)}/R_{TT(NOM)}$	ODTLcwn4 = 4 + ODTLcnw	^t CK
ODT latency for change from $R_{TT(WR)}$ to $R_{TT(Park)}/R_{TT(NOM)}$ (BL = 8)	ODTLcwn 8	Registering external WRITE command	Change R_{TT} strength from $R_{TT(NOM)}$ to $R_{TT(WR)}$	ODTLcwn8 = 6 + ODTLcnw	^t CK (AVG)
R _{TT} change skew	^t ADC	ODTLcnw ODTLcwn	R _{TT} valid	t ADC (MIN) = 0.3 t ADC (MAX) = 0.7	^t CK (AVG)

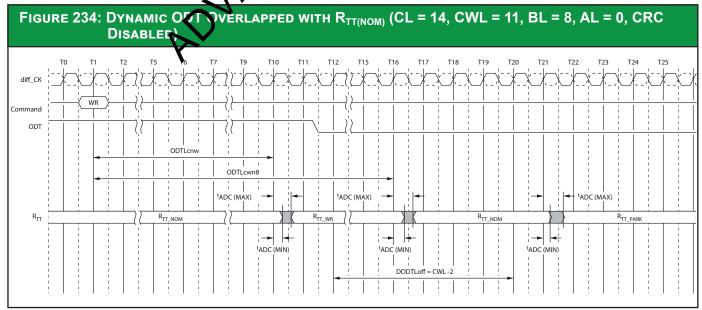

Dynamic ODT

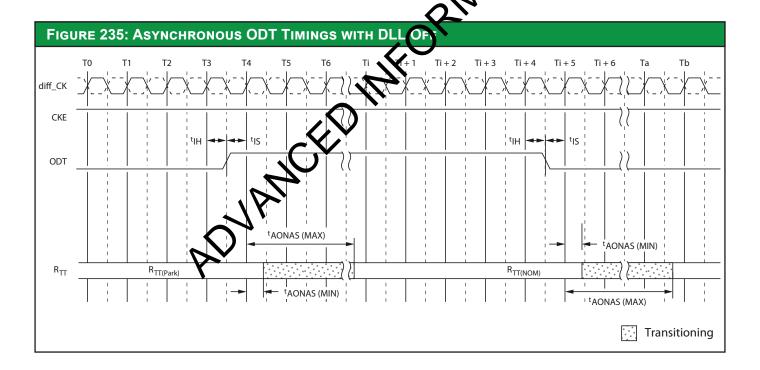
TABLE 135:	DYNAMIC ODT LATE	NCIES AND TIMING V	VITH PREAMBLE MOI	DE AND CRC MODE	MATRIX
	1 ^t CK Pa	rameter	2 ^t CK Pa	rameter	
Symbol	CRC Off	CRC On	CRC Off	CRC On	Unit
ODTLcnw ¹	WL - 2	WL - 2	WL - 3	WL - 3	^t CK
ODTLcwn4	ODTLcnw + 4	ODTLcnw + 7	ODTLcnw + 5	ODTLcnw + 8	
ODTLcwn8	ODTLcnw + 6	ODTLcnw + 7	ODTLcnw + 7	ODTLcnw + 8	

Note: 1. ODTLcnw = WL - 2 (1^tCK preamble) or WL - 3 (2^tCK preamble).

- Notes: 1. ODTLch V = VL 2 (1^tCK preamble) or WL 3 (2^tCK preamble).
 - 2. If BCC, ben ODTLcwn = WL + 4 if CRC disabled or WL + 5 if CRC enabled; If BL8, then ODTLcwn = WL + 6 if CRC disabled or WL + 7 if CRC enabled.

Note: 1. Behavior with WR command issued while ODT is registered HIGH.

Asynchronous ODT Mode


Asynchronous ODT mode is selected when the DRAM runs in DLL-off mode. In asynchronous ODT timing mode, the internal ODT command is *not* delayed by either additive latency (AL) or the parity latency (PL) relative to the external ODT signal ($R_{TT(NOM)}$). In asynchronous ODT mode, two timing parameters apply: tAONAS (MIN/MAX), and tAOFAS (MIN/MAX).

R_{TT(NOM)} Turn-on Time

- Minimum R_{TT(NOM)} turn-on time (^tAONAS [MIN]) is when the device termination circuit leaves R_{TT(Park)} and ODT resistance begins to turn on.
- Maximum R_{TT(NOM)} turn-on time (^tAONAS [MAX]) is when the ODT resistance has reached R_{TT(NOM)}.
- tAONAS (MIN) and tAONAS (MAX) are measured from ODT being sampled HIGH.

$R_{TT(NOM)}$ Turn-off Time

- Minimum RTT(NOM) turn-off time (t AOFAS [MIN]) is when the device's termination circuit starts to leave $R_{TT(NOM)}$.
- Maximum R_{TT(NOM)} turn-off time (^tAOFAS [MAX]) is when the on-die termination has reached R_{TT(Park)}.
- tAOFAS (MIN) and tAOFAS (MAX) are measured from ODT being sampled XOX

Options Tables

				Data	Rate		
Function	Acronym	1600	1866	2133	2400	2666	3200
Write leveling	WL	Yes	Yes	Yes	Yes	TBD	TBD
Temperature controlled refresh	TCR	Yes	Yes	Yes	Yes	TBDs	TBD
Low-power auto self refresh	LPASR	Yes	Yes	Yes	Yes	TBD	TBD
Fine granularity refresh	FGR	Yes	Yes	Yes	Yes	TBD	TBD
Multipurpose register	MR	Yes	Yes	Yes	Yes	TBD	TBD
Data mask	DM	Yes	Yes	Yes	Yes	TBD	TBD
Data bus inversion	DBI	Yes	Yes	Yes	Yes	TBD	TBD
TDQS	-	Yes	Yes	Yes	Yes	TBD	TBD
ZQ calibration	ZQ CAL	Yes	Yes	Yes	Yes	TBD	TBD
V _{REFDQ} calibration	-	Yes	Yes	Yes	Yes	TBD	TBD
Per-DRAM addressability	Per DRAM	Yes	Yes	Yes	Yes	TBD	TBD
Mode regsiter readout	-	Yes	Yes	es	Yes	TBD	TBD
Command/Address latency	CAL	Yes	Yes	Yes	Yes	TBD	TBD
Write CRC	CRC	Yes	Yes	Yes	Yes	TBD	TBD
CA parity	_	Yes	Yes	Yes	Yes	TBD	TBD
Gear-down mode	-	No	No	No	No	TBD	TBD
Programmable preamble	-	No	No	No	Yes	TBD	TBD
Maximum power-down mode	-	Yes	Yes	Yes	Yes	TBD	TBD
Connectivity test mode	СТ	Yes	Yes	Yes	Yes	TBD	TBD
Additive latency	AL	Yes	Yes	Yes	Yes	TBD	TBD
Target row refresh mode	TRR	Yes	Yes	Yes	Yes	TBD	TBD
Post package repair mode	Pril	Yes	Yes	Yes	Yes	TBD	TBD
Soft post package repair mode	SP PR	Yes	Yes	Yes	Yes	TBD	TBD

TABLE 137: WIDTH OFTIO

\		
Function	Acronym	
Write leveling	WL	Yes
Temperature controlled refresh	TCR	Yes
Low-power auto self refresh	LPASR	Yes
Fine granularity refresh	FGR	Yes
Multipurpose register	MR	Yes

Data bus inversion DBI No TDQS - No ZQ calibration ZQ CAL Yes V _{REFDQ} calibration - Yes Per-DRAM addressability Per DRAM Yes Mode regsiter readout - Yes Command/Address latency CAL Yes Write CRC CRC Yes CA parity - Yes		CONTINUED)	
Data bus inversion DBI No TDQS - No ZQ calibration ZQ CAL Yes V _{REFDQ} calibration - Yes Per-DRAM addressability Per DRAM Yes Mode regsiter readout - Yes Command/Address latency CAL Yes Write CRC CRC Yes	Function	Acronym	
TDQS - No ZQ calibration ZQ CAL Yes V_{REFDQ} calibration - Yes Per-DRAM addressability Per DRAM Mode regsiter readout - Yes Command/Address latency CAL Yes Write CRC CRC	Data mask	DM	No
ZQ calibration ZQ CAL Yes V _{REFDQ} calibration - Yes Per-DRAM addressability Per DRAM Mode regsiter readout - Yes Command/Address latency CAL Yes Write CRC CRC	Data bus inversion	DBI	No
V _{REFDQ} calibration - Yes Per-DRAM addressability Per DRAM Ye Mode regsiter readout - Yes Command/Address latency CAL Yes Write CRC CRC Yes	TDQS	-	No
Per-DRAM addressability Mode regsiter readout Command/Address latency Write CRC Per DRAM Per DRAM CAL Yes	ZQ calibration	ZQ CAL	Yes
Mode regsiter readout – Ces Command/Address latency CAL Yes Write CRC CRC	V _{REFDQ} calibration	-	Yes
Command/Address latency CAL Yes Write CRC CRC Yes	Per-DRAM addressability	Per DRAM	K
Write CRC CRC Yes	Mode regsiter readout	-	/és
	Command/Address latency	CAL	Yes
CA parity – Yes Gear-down mode – Yes	Write CRC	CRC	Yes
Gear-down mode – Yes	CA parity	-	Yes
CED INFO	Gear-down mode	-	Yes
		ONFO	

ST9D4512M40DBG0

Options Tables

Function	Acronym	Rev. A
Write leveling	WL	Yes
Temperature controlled refresh	TCR	Yes
Low-power auto self refresh	LPASR	Yes
Fine granularity refresh	FGR	Yes
Multipurpose register	MR MR	Yes
Data mask	M	Yes
Data bus inversion	DBI	Yes
TDQS	//-	Yes
ZQ calibration	ZQ CAL	Yes
V _{REFDQ} calibration	_	Yes
Per-DRAM addressability	Per DRAM	Yes
Mode regsiter readout	Y -	Yes
Command/Address latency	CAL	Yes
Write CRC	CRC	Yes
CA parity	-	Yes
Gear-down mode	-	N/A
Programmable preamble	-	Pending
Maximum power-down mode	_	Yes
Connectivity test mode	СТ	Yes
Additive latency	AL	Yes
Target row refresh mode	TRR	N/A
Post packagy repair mode	PPR	Pending

BV BV		INITIATE
BV	9 31 2016	
	DV 0.01.2010	Refine pin-out for x32D, x72S, and x40D
BV	BV 10.11.2016	Add Figures 2 and 3 - Block Diagrams; Correct Figure 5
DO	DO 3.27.2017	Corrections Pages 19-25 - Ball Descriptions and Ball Locations
DO	DO 6.14.2017	Added G suffix to part numbering Figure 1
DO	DO 6.23.2017	Simplify Block diagrans at customer request
		Added G suffix to part numbering Figure 1 Simplify Block diagrans at customer request Preserves the right to make corrections, modifications, enhancements, improvements, and other at any time and to discontinue any product or service without notice. Customers should obtain the

STACKED Technologies Incorporated reserves the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. STACKED Technologies does not assume any liability arising out of the application or use of any product or circuit described herein. In no event shall any liability exceed the product purchase price. STACKED Technologies believes the information contained herein is accurate, however it is not liable for inadvertent errors. Information subject to change without notice. STACKED Technologies assumes no liability for use of its products in mission critical or life support applications. Products of STACKED Technologies are not warranted nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with STACKED Technologies. Furthermore, STACKED Technologies does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user.

This data sheet contains initial descriptions of products still under development.

Product Sales Inguiries and Support: 800 941-7880 STACKED logo is a trademark of STACKED Technologeis Incorporated